Skip to main content

Advertisement

Log in

Monitoring Etna volcanic plumes using a scanning LiDAR

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

In this paper, we use data obtained from LiDAR measurements during an ash emission event on 15 November 2010 at Mt. Etna, in Italy, in order to evaluate the spatial distribution of volcanic ash in the atmosphere. A scanning LiDAR system, located at 7 km distance from the summit craters, was directed toward the volcanic vents and moved in azimuth and elevation to analyse different volcanic plume sections. During the measurements, ash emission from the North East Crater and high degassing from the Bocca Nuova Crater were clearly visible. From our analysis we were able to: (1) evaluate the region affected by the volcanic plume presence; (2) distinguish volcanic plumes containing spherical aerosols from those having non-spherical ones; and (3) estimate the frequency of volcanic ash emissions. Moreover, the spatial distribution of ash mass concentration was evaluated with an uncertainty of about 50 %. We found that, even during ash emission episodes characterised by low intensity like the 15 November 2010 event, the region in proximity of the summit craters should be avoided by air traffic operations, the ash concentration being greater than 4 × 10−3 g/m3. The use of a scanning permanent LiDAR station may usefully monitor the volcanic activity and help to drastically reduce the risks to aviation operations during the frequent Etna eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackermann J (1998) The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study. J Atmos Ocean Technol 15:1043–1050

    Article  Google Scholar 

  • Alparone S, Andronico D, Sgroi T, Ferrari F, Lodato L, Reitano D (2007) Alert system to mitigate tephra fallout hazards at Mt. Etna Volcano, Italy. Nat Hazards. doi:10.1007/s11069-007-9120-7

  • Andò B, Pecora E (2006) An advanced video-based system for monitoring active volcanoes. Comput Geosci 32:85–91

    Article  Google Scholar 

  • Andronico D, Spinetti C, Cristaldi A, Buongiorno MF (2009) Observations of Mt. Etna volcanic ash plumes in 2006: an integrated approach from ground-based and polar satellite NOAA–AVHRR monitoring system. J Volcanol Geotherm Res 180:135–147

    Article  Google Scholar 

  • Andronico D, Lo Castro D, Sciotto M, Spina L (2012) The 2010 ash emissions at the summit craters of Mt. Etna: relationship with seismo-acoustic signals. In revision on Journ Geophys Res

  • Ansmann A, Tesche M, Groß S, Freudenthaler V, Seifert P, Hiebsch A, Schmidt J, Wandinger U, Mattis I, Müller D, Wiegner M (2010) The 16 April 2010 major volcanic ash plume over central Europe: EARLINET LIDAR and AERONET photometer observations at Leipzig and Munich, Germany. Geophys Res Lett 37. doi:10.1029/2010GL043809

  • Ansmann A, Tesche M, Seifert P, Groß S, Freudenthaler V, Apituley A, Wilson KM, Serikov I, Linné H, Heinold B, Hiebsch A, Schnell F, Schmidt J, Mattis I, Wandinger U, Wiegner M (2011) Ash and fine–mode particle mass profiles from EARLINET–AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010. J Geophys Res 116:D00U02. doi:10.1029/2010JD015567

    Article  Google Scholar 

  • Barsotti S, Andronico D, Neri A, Del Carlo P, Baxter PJ, Aspinall WP, Hincks T (2010) Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation. J Volcanol Geotherm Res 192(1-2):85–96

    Article  Google Scholar 

  • Barton IJ, Prata AJ, Watterson IG, Young SA (1992) Identification of Mount Hudson volcanic cloud over SE Australia. Geophys Res Lett 19:1211–1214

    Article  Google Scholar 

  • Behncke B, Falsaperla S, Pecora E (2009) Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data. J Geophys Res 114. doi:10.1029/2008JB005882

  • Berthier S, Chazette P, Couvert P, Pelon J, Dulac F, Thieuleux F, Moulin C, Pain T (2006) Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy. J Geophys Res 111. doi:10.1029/2005JD006999

  • Blong RJ (1984) Volcanic hazards. A sourcebook on the effects of eruptions. Academic, Sidney

    Google Scholar 

  • Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull Volcanol 74:1–10

    Article  Google Scholar 

  • Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behavior. Bull Volcanol 67:732–742

    Article  Google Scholar 

  • Burton M, Caltabiano T, Salerno GG, Mure F, Condarelli D (2004) Automatic measurements of SO2 flux on Stromboli and Mt. Etna using a network of scanning UV spectrometers. J Geophys Res 31. doi:10.1029/203GL019181

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Carstea E, Radulescu R, Belegante L, Radu C (2010) Volcanic ash monitoring over Bucharest area using a multiwavelength Raman lidar. Optoelectron Adv Mater Rapid Commun 4:2162–2166

    Google Scholar 

  • Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Mount Etna, anatomy of a volcano. Stanford University Press, Stanford

    Google Scholar 

  • Colette A, Favez O, Meleux F, Chiappini L, Haeffelin M, Morille Y, Malherbe L, Papin A, Bessagnet B, Menut L, Leoz E, Rouïl L (2010) Assessing in near real time the impact of the April 2010 Eyjafjallajökull ash plume on air quality. Atmos Environ 45:1217–1221

    Article  Google Scholar 

  • Corradini S, Tirelli C, Gangale G, Pugnaghi S, Carboni E (2010) Theoretical study on volcanic plume SO2 and ash retrievals using ground TIR camera: sensitivity analysis and retrieval procedure developments. IEEE Trans Geosc Remote Sens 48:1619–1628

    Article  Google Scholar 

  • Corsaro RA (2010) Rapporto settimanale sull’attività eruttiva dell’Etna (5–11 aprile 2010), Prot. int. n° UFVG2010/14, Intenal Report in www.ct.ingv.it

  • Corsaro RA, Pompilio M (2004) Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). J Volcanol Geotherm Res 137:55–71

    Article  Google Scholar 

  • Defoor TE, Robinson E, Ryan S (1992) Early LIDAR Observations of the June 1991 Pinatubo eruption plume at Mauna-Loa-Observatory, Hawaii. Geophys Res Lett 19:187–190

    Article  Google Scholar 

  • Di Grazia G, Cannata A, Montalto P, Patanè D, Privitera E, Zuccarello L, Boschi E (2009) A multiparameter approach to volcano monitoring based on 4D analyses of seismo-volcanic and acoustic signals: the 2008 Mt. Etna eruption. Geophys Res Lett. doi:10.1029/2009GL039567

  • Durant A, Bonadonna C, Horwell CJ (2010) Atmospheric and environmental impacts of volcanic particle emissions. Elements 6:235–240

    Article  Google Scholar 

  • Fernald FG (1984) Analysis of atmospheric lidar observations: some comments. Appl Optics 23:652–653

    Article  Google Scholar 

  • Fiorani L, Colao F, Palucci A (2009) Measurement of Mount Etna plume by CO2-laser-based lidar. Opt Lett 34:800–802

    Article  Google Scholar 

  • Folch A, Jorba O, Viramonte J (2008) Volcanic ash forecast—application to the May 2008 Chaiten eruption. Nat Hazards Earth Syst Sci 94:109–117

    Google Scholar 

  • Gasteiger J, Groß S, Freudenthaler V, Wiegner M (2011) Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements. Atmos Chem Phys 11:2209–2223

    Article  Google Scholar 

  • Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2008) Volcanic hazards to airports. Nat Hazards. doi: 10.1007/s11069-008-9254-2

  • Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24

    Article  Google Scholar 

  • Klett JD (1985) Lidar inversion with variable backscatter/extinction ratios. Appl Optics 24:1638–1643

    Article  Google Scholar 

  • Lacasse C, Karlsdottir S, Larsen G, Soosalu H, Rose WI, Ernst GGJ (2004) Weather radar observations of the Hekla 2000 eruption cloud, Iceland. Bull Volcanol 5:457–473

    Google Scholar 

  • Larsen G, Vilmundardòttir EG, Thorkelsson B (1992) The 1991 Hekla eruption: ash fall and ash layer from the first days of the eruption. Nàtturufroeingurinn 61(3–4):159–176

    Google Scholar 

  • Mather TA, Pyle DM, Oppenheimer C (2003) Tropospheric Volcanic Aerosol, in Volcanism and the Earth's Atmosphere, Geophysical Monograph 139, A. Robock and C. Oppenheimer eds., Am. Geophys. Union, Washington, D.C., pp 189–212

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Oppenheimer C (2003) Volcanic degassing. In: Rudnick RL (ed) The crust, Holland HD, Turekian KK. Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 123–166

  • Pappalardo G, Amodeo A, Mona L, Pandolfi M, Pergola N, Cuomo V (2004) Raman LIDAR observations of aerosol emitted during the 2002 Etna eruption. Geophys Res Lett 31. doi:10.1029/2003GL019073

  • Pisani G, Boselli A, Coltelli M, Leto G, Pica G, Scollo S, Spinelli N, Wang X (2012) Lidar depolarization measurement of fresh volcanic ash from Mt. Etna, Italy. Atmos Environ 62:34–40

    Google Scholar 

  • Prata AJ (1989) Infrared radiative transfer calculations for volcanic ash clouds. Geophys Res Lett 16:1293–1296

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219

    Article  Google Scholar 

  • Sassen K (2005) Polarization in lidar. In: Weitkamp C (ed) Lidar. Springer, New York, pp 19–42

    Chapter  Google Scholar 

  • Sassen K, Zhu J, Webley P, Dean K, Cobb P (2007) Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska. Geophys Res Lett 34. doi:10.1029/2006GL027237

  • Schumann U, Weinzierl B, Reitebuch O, Schlager H, Minikin A, Forster C, Baumann R, Sailer T, Graf K, Mannstein H, Voigt C, Rahm S, Simmet R, Scheibe M, Lichtenstern M, Stock P, Rüba H, Schäuble D, Tafferner A, Rautenhaus M, Gerz T, Ziereis H, Krautstrunk M, Mallaun C, Gayet JF, Lieke K, Kandler K, Ebert M, Weinbruch S, Stohl A, Gasteiger J, Groß S, Freudenthale V, Wiegner M, Ansmann A, Tesche M, Olafsson H, Sturm K (2011) Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys 11:2245–2279

    Article  Google Scholar 

  • Scollo S, Coltelli M, Prodi F, Folegani S, Natali S (2005) Terminal settling velocity measurements of volcanic ash during the 2002–2003 Etna eruption by an X-band microwave raingauge disdrometer. Geophys Res Lett 32. doi:10.1029/2004GL022100

  • Scollo S, Prestifilippo M, Spata G, D’Agostino M, Coltelli M (2009) Forecasting and monitoring Etna volcanic plumes. Nat Hazards Earth Syst Sci 9:1573–1585

    Article  Google Scholar 

  • Scollo S, Kahn RA, Nelson DL, Coltelli M, Diner DJ, Garay MJ, Realmuto VJ (2012) MISR observation of Etna volcanic plumes. J Geophys Res 117. doi:10.1029/2011JD016625

  • Sicard M, Rocadenbosch F, Reba MNM, Comeron A, Tomas S, Garcia-Vizcaino D, Batet O, Barrios R, Kumar D, Baldasano JM (2011) Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain. Atmos Chem Phys 11:175–190

    Article  Google Scholar 

  • Sicard M, Guerrero-Rascado JL, Navas-Guzman F, Preissler J, Molero F, Tomas S, Bravo-Aranda JA, Comeron A, Rocadenbosch F, Wagner F, Pujadas M, Alados-Arboledas L (2012) Monitoring of the Eyjafjallajokull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations. Atmos Chem Phys 12:3115–3130

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester

    Google Scholar 

  • Spina L, Lo Castro D, Sciotto M, Andronico D (2012) Investigation of 2010 ash emission episodes at Mt Etna by combining volcanological and seismo-acoustic analyses. EGU General Assembly 2012, Vol. 14, EGU2012-5534-1

  • Stohl A, Prata AJ, Eckhardt S, Clarisse L, Durant A, Henne S, Kristiansen NI, Minikin A, Schumann U, Seibert P, Stebel K, Thomas HE, Thorsteinsson T, Torseth K, Weinzierl B (2011) Determination of time- and height-resolved volcanic ash emissions for quantitative ash dispersion modeling: the 2010 Eyjafjallajokull eruption. Atmos Chem Phys Discuss 11(2):5541–5588

    Article  Google Scholar 

  • Tesche M, Ansmann A, Muller D, Althausen D, Engelmann R, Freudenthaler V, Groβ S (2009) Separation of dust and smoke profiles over Cape Verde by using multi-wavelength Raman and polarization lidars during SAMUM 2008. J Geophys Res 114:D13203. doi:10.1029/2009JD011862

    Article  Google Scholar 

  • Thomas HE, Watson IM (2010) Observations of volcanic emissions from space: current and future perspectives. Nat Hazards 54:323–354

    Article  Google Scholar 

  • Wandinger U (2005) Introduction to Lidar. In: Weitkamp C (ed) Lidar. Springer, New York, pp 19–42

    Google Scholar 

  • Wang X, Boselli A, D’Avino L, Pisani G, Spinelli N, Amodeo A, Chaikovskyd A, Wiegner M, Nickovi S, Papayannis A, Perrone MR, Rizi V, Sauvage L, Stohl A (2008) Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001–2002. Atmos Environ 42:893–905

    Article  Google Scholar 

  • Winker DM, Osborn MT (1992) Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar. Geophys Res Lett 19:171–174

    Google Scholar 

Download references

Acknowledgements

Volcanological information was obtained by INGV-OE reports of Etna activity. The authors thank Boris Behncke, who furnished information of the Etna activity. The authors also thank the native English speaker Stephen Conway. The authors are grateful to Emilio Biale, Francesco Ciancitto, Michele Prestifilippo and Emilio Pecora who maintain the video-surveillance system at INGV-OE. The authors thank the reviewer Adam Durant, the anonymous reviewer, the associate editor Jacopo Taddeucci and the executive editor James D.L. White for their useful suggestions. This work was funded by the VAMOS SEGURO project, Programma di Cooperazione Transfrontaliera Italia-Malta 2007–2013, A1.2.3-62, Obiettivo Specifico 2.3. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 262254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Scollo.

Additional information

Editorial responsibility: J. Taddeucci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scollo, S., Boselli, A., Coltelli, M. et al. Monitoring Etna volcanic plumes using a scanning LiDAR. Bull Volcanol 74, 2383–2395 (2012). https://doi.org/10.1007/s00445-012-0669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0669-y

Keywords

Navigation