Skip to main content

Advertisement

Log in

Direct effects of selection on aboveground biomass contrast with indirect structure-mediated effects of complementarity in a subtropical forest

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the multiple biotic and abiotic controls of aboveground biomass (AGB) is important for projecting the consequences of global change and to effectively manage carbon storage. Although large-scale studies have identified the major environmental and biological controls of AGB, drivers of local-scale variation are less well known. Additionally, involvement of multiple causal paths and scale dependence in effect sizes potentially confounds comparisons among studies differing in methodology and sampling grain. We tested for scale dependence in evidence supporting selection, complementarity and environmental factors as the main determinants of AGB variation over a 50 ha study extent in subtropical China, modelling this at four sampling grains (0.01, 0.04, 0.25 and 1 ha). At each grain, we used piecewise structural equation models to quantify the direct and indirect effects of environmental (topographic and edaphic properties) and forest attributes (structure, diversity and functional traits) on AGB, while controlling for spatial autocorrelation. Direct scale-invariant effects on AGB were evident for structure and community-mean traits, supporting dominance of selection effects. However, diversity had strong indirect effects on AGB via forest structure, particularly at larger sampling grains (≥ 0.25 ha), while direct effects only emerged at the smallest grain size (0.01 ha). The direct and indirect effects of edaphic and topographic factors were also important for explaining both forest attributes and AGB across all scales. Although selection effects appeared to be more influential on ecosystem function, ignoring indirect causal pathways for diversity via structural attributes risks overlooking the importance of complementarity on ecosystem functioning, particularly as sampling grain increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13:4627–4635. https://doi.org/10.5194/bg-13-4627-2016

    Article  CAS  Google Scholar 

  • Ali A, Yan ER, Chang SX, Cheng JY, Liu XY (2017) Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ 574:654–662. https://doi.org/10.1016/j.scitotenv.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019a) Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For Ecol Manage 432:823–831. https://doi.org/10.1016/j.foreco.2018.10.024

    Article  Google Scholar 

  • Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019b) Elucidating space, climate, edaphic, and biodiversity effects on aboveground biomass in tropical forests. Land Degrad Dev 30:918–927. https://doi.org/10.1002/ldr.3278

    Article  Google Scholar 

  • Baltzer JL, Thomas SC (2007) Determinants of whole-plant light requirements in Bornean rain forest tree saplings. J Ecol 95:1208–1221. https://doi.org/10.1111/j.1365-2745.2007.01286.x

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. https://doi.org/10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  • Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc Natl Acad Sci USA 110:8996–9000. https://doi.org/10.1073/pnas.1301685110

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Izaguirre N, Chi X, Baruffol M, Tang Z, Ma K, Schmid B, Niklaus PA (2016) Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest. PLoS ONE 11:e0167771. https://doi.org/10.1371/journal.pone.0167771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23:563–573. https://doi.org/10.1111/geb.12143

    Article  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629

    Article  Google Scholar 

  • Che X, Zhang M, Zhao Y, Zhang Q, Quan Q, Møller A, Zou F (2018) Phylogenetic and functional structure of wintering waterbird communities associated with ecological differences. Sci Rep 8:1232. https://doi.org/10.1038/s41598-018-19686-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang JM, Spasojevic MJ, Muller-Landau HC, Sun IF, Lin Y, Su SH, Chen ZS, Chen CT, Swenson NG, McEwan RW (2016) Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182:829–840. https://doi.org/10.1007/s00442-016-3717-z

    Article  PubMed  Google Scholar 

  • Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao H, Cao M, Cárdenas D, Chang L-W, Chiang J-M, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao Z, Harrison RD, Howe R, Hsieh C-F, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian J, Lin D, Liu H, Lutz JA, Ma K, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Mohd Razman S, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang W, Schurman J, Su S-H, Sukumar R, Sun I-F, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye W, Yuan Z, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. https://doi.org/10.1111/1365-2745.12132

    Article  Google Scholar 

  • Chiu CH, Chao A (2014) Distance-based functional diversity measures and their decomposition: a framework based on hill numbers. PLoS ONE 9:e100014. https://doi.org/10.1371/journal.pone.0100014

    Article  PubMed  PubMed Central  Google Scholar 

  • Chojnacky DC, Milton M (2008) Measuring carbon in shrubs. Field measurements for forest carbon monitoring. Springer, Netherlands, Dordrecht, pp 45–72

    Chapter  Google Scholar 

  • Díaz S, Lavorel S, De Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. https://doi.org/10.1073/pnas.0704716104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Zang R, Lu X, Huang J (2019) Functional features of tropical montane rain forests along a logging intensity gradient. Ecol Ind 97:311–318. https://doi.org/10.1016/j.ecolind.2018.10.030

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  • Dray S, Pélissier R, Couteron P, Fortin M-J, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour A-B, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. https://doi.org/10.1890/11-1183.1

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Cons 61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3

    Article  Google Scholar 

  • Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191–201. https://doi.org/10.1111/1365-2745.12346

    Article  Google Scholar 

  • Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2018) Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J Ecol 106:561–570. https://doi.org/10.1111/1365-2745.12847

    Article  CAS  Google Scholar 

  • Gao LM, Liu J, Cai J, Yang JB, Zhang T, Li DZ (2012) A Synopsis of technical notes on the standards for plant DNA barcoding. Plant Divers Res 34:592–606. https://doi.org/10.3724/SP.J.1143.2012.12138

    Article  CAS  Google Scholar 

  • Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393. https://doi.org/10.1038/nature16524

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x

    Article  Google Scholar 

  • Hao MH, Zhang CY, Zhao XH, von Gadow K (2018) Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecol Evol 8:2395–2406. https://doi.org/10.1002/ece3.3857

    Article  PubMed  PubMed Central  Google Scholar 

  • He D, Deane DC (2016) The relationship between trunk—and twigwood density shifts with tree size and species stature. For Ecol Manage 372:137–142. https://doi.org/10.1016/j.foreco.2016.04.015

    Article  Google Scholar 

  • Hernández-Stefanoni JL, Reyes-Palomeque G, Castillo-Santiago MÁ, George-Chacón S, Huechacona-Ruiz A, Tun-Dzul F, Rondon-Rivera D, Dupuy JM (2018) Effects of sample plot size and GPS location errors on aboveground biomass estimates from LiDAR in tropical dry forests. Remote Sensing 10:1586. https://doi.org/10.3390/rs10101586

    Article  Google Scholar 

  • Holdaway RJ, Easdale TA, Carswell FE, Richardson SJ, Peltzer DA, Mason NWH, Brandon AM, Coomes DA (2017) Nationally representative plot network reveals contrasting drivers of net biomass change in secondary and old-growth forests. Ecosystems 20:944–959. https://doi.org/10.1007/s10021-016-0084-x

    Article  Google Scholar 

  • Jiang Y, Zhang B, Wang W, Li B, Wu Z, Chu C (2020) Topography and plant community structure contribute to spatial heterogeneity of soil respiration in a subtropical forest. Sci Total Environ 733:139287. https://doi.org/10.1016/j.scitotenv.2020.139287

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Ledo A, Illian JB, Schnitzer SA, Wright SJ, Dalling JW, Burslem DFRP (2016) Lianas and soil nutrients predict fine-scale distribution of above-ground biomass in a tropical moist forest. J Ecol 104:1819–1828. https://doi.org/10.1111/1365-2745.12635

    Article  CAS  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM : piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512

    Article  Google Scholar 

  • Li Y, Bao W, Bongers F, Chen B, Chen G, Guo K, Jiang M, Lai J, Lin D, Liu C, Liu X, Liu Y, Mi X, Tian X, Wang X, Xu W, Yan J, Yang B, Zheng Y, Ma K (2019) Drivers of tree carbon storage in subtropical forests. Sci Total Environ 654:684–693. https://doi.org/10.1016/j.scitotenv.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Anderson-Teixeira KJ, Lai J, Mi X, Ren H, Ma K (2016) Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409:435–446. https://doi.org/10.1007/s11104-016-2976-0

    Article  CAS  Google Scholar 

  • Lu RK (2000) Analytical methods of soil and agricultural chemistry (in Chinese). China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Luo YH, Cadotte MW, Burgess KS, Liu J, Tan SL, Zou JY, Xu K, Li DZ, Gao LM (2019) Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett 22:1449–1461. https://doi.org/10.1111/ele.13330

    Article  PubMed  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R-core team (2019) nlme: linear and nonlinear mixed effects models. In R-package 3.1–141, Accessed August 2019

  • Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328. https://doi.org/10.1111/geb.12364

    Article  Google Scholar 

  • Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Broadbent EN, Chazdon RL, Craven D, De Almeida-Cortez JS, Cabral GAL, De Jong BHJ, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona JC, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Munõz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, De Oliveira AA, Orihuela-Belmonte E, Penã-Claros M, Pérez-Garciá EA, Piotto D, Powers JS, Rodríguez-Velázquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, Van Breugel M, Van Der Wal H, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Bentos TV, Williamson GB, Rozendaal DMA (2016) Biomass resilience of Neotropical secondary forests. Nature 530:211–214. https://doi.org/10.1038/nature16512

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, van der Sande MT, Arets EJMM, Ascarrunz N, Enquist B, Finegan B, Licona JC, Martínez-Ramos M, Mazzei L, Meave JA, Muñoz R, Nytch CJ, de Oliveira AA, Pérez-García EA, Prado-Junior J, Rodríguez-Velázques J, Ruschel AR, Salgado-Negret B, Schiavini I, Swenson NG, Tenorio EA, Thompson J, Toledo M, Uriarte M, van der Hout P, Zimmerman JK, Peña-Claros M (2017) Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr 26:1423–1434. https://doi.org/10.1111/geb.12668

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 18 August 2019

  • Schmitt S, Maréchaux I, Chave J, Fischer FJ, Piponiot C, Traissac S, Hérault B (2020) Functional diversity improves tropical forest resilience: insights from a long-term virtual experiment. J Ecol 108:831–843. https://doi.org/10.1111/1365-2745.13320

    Article  Google Scholar 

  • Shi W, Zhang Q, Sui X, Li B, He F, Chu C (2018) The effects of habitat filtering and non-habitat processes on species spatial distribution vary across life stages. Am J Bot 105:1469–1476. https://doi.org/10.1002/ajb2.1140

    Article  PubMed  Google Scholar 

  • Shipley B (2000) A new inferential test for path models based on directed acyclic graphs. Struct Equ Modeling 7:206–218. https://doi.org/10.1207/S15328007SEM0702_4

    Article  Google Scholar 

  • Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368. https://doi.org/10.1890/08-1034.1

    Article  PubMed  Google Scholar 

  • Sullivan MJP, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Lopez-Gonzalez G, Miles L, Monteagudo-Mendoza A, Sonké B, Sunderland T, ter Steege H, White LJT, Affum-Baffoe K, Aiba S, de Almeida EC, de Oliveira EA, Alvarez-Loayza P, Dávila EÁ, Andrade A, Aragão LEOC, Ashton P, Aymard CGA, Baker TR, Balinga M, Banin LF, Baraloto C, Bastin J-F, Berry N, Bogaert J, Bonal D, Bongers F, Brienen R, Camargo JLC, Cerón C, Moscoso VC, Chezeaux E, Clark CJ, Pacheco ÁC, Comiskey JA, Valverde FC, Coronado ENH, Dargie G, Davies SJ, De Canniere C, Djuikouo KMN, Doucet J-L, Erwin TL, Espejo JS, Ewango CEN, Fauset S, Feldpausch TR, Herrera R, Gilpin M, Gloor E, Hall JS, Harris DJ, Hart TB, Kartawinata K, Kho LK, Kitayama K, Laurance SGW, Laurance WF, Leal ME, Lovejoy T, Lovett JC, Lukasu FM, Makana J-R, Malhi Y, Maracahipes L, Marimon BS, Junior BHM, Marshall AR, Morandi PS, Mukendi JT, Mukinzi J, Nilus R, Vargas PN, Camacho NCP, Pardo G, Peña-Claros M, Pétronelli P, Pickavance GC, Poulsen AD, Poulsen JR, Primack RB, Priyadi H, Quesada CA, Reitsma J, Réjou-Méchain M, Restrepo Z, Rutishauser E, Salim KA, Salomão RP, Samsoedin I, Sheil D, Sierra R, Silveira M, Slik JWF, Steel L, Taedoumg H, Tan S, Terborgh JW, Thomas SC, Toledo M, Umunay PM, Gamarra LV, Vieira ICG, Vos VA, Wang O, Willcock S, Zemagho L (2017) Diversity and carbon storage across the tropical forest biome. Sci Rep 7:39102. https://doi.org/10.1038/srep39102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. https://doi.org/10.1126/science.277.5330.1300

    Article  CAS  Google Scholar 

  • van der Sande MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. J Ecol 105:1223–1234. https://doi.org/10.1111/1365-2745.12756

    Article  CAS  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. https://doi.org/10.1093/bioinformatics/btn358

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Franklin SB, Wang Q, Shi Z, Luo Y, Lu Z, Zhang J, Qiao X, Jiang M (2015) Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest. For Ecol Manage 357:95–103. https://doi.org/10.1016/j.foreco.2015.08.010

    Article  Google Scholar 

  • Xu L, Shi Y, Fang H, Zhou G, Xu X, Zhou Y, Tao J, Ji B, Xu J, Li C, Chen L (2018) Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci Total Environ 631–632:619–626. https://doi.org/10.1016/j.scitotenv.2018.03.080

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Wang S, Ali A, Gazol A, Ruiz-Benito P, Wang X, Lin F, Ye J, Hao Z, Loreau M (2018) Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Ann For Sci 75:67. https://doi.org/10.1007/s13595-018-0745-3

    Article  Google Scholar 

  • Zhang Q, Buyantuev A, Li FY, Jiang L, Niu J, Ding Y, Kang S, Ma W (2017) Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol Evol 7:1605–1615. https://doi.org/10.1002/ece3.2778

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao K, He F (2016) Estimating light environment in forests with a new thresholding method for hemispherical photography. Can J For Res 46:1103–1110. https://doi.org/10.1139/cjfr-2016-0003

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of former SYSU-Alberta Joint Lab for Biodiversity Conservation and thank D. He, R.X. Lan, K.N. Zhao and Z. Wen, for sharing their data with us. We extend additional thanks to field staff from the Heishiding forest plot: W.N. Ye, J.L. Chen and M.J. Jun. We thank F.L. He, D. He and M. Cadotte for comments and suggestions on a draft version of this work. DIR-H acknowledges a Chinese Scholarship Council (CSC) grant and thank W.J. Liu for her unconditional support. We would like to thank A. Ali and an anonymous reviewer for their constructive comments which greatly improved the manuscript. We dedicate this manuscript to RNR.

Funding

This work was funded by the National Natural Science Foundation of China (Grant number 31925027, 31622014 and 31570426).

Author information

Authors and Affiliations

Authors

Contributions

DIR-H and DCD conceived the study, did all analyses, and led the writing; CC contributed to study and statistical design; DIR-H did the AGB field investigation; WW, YC, BL and WL designed and undertook field and laboratory work to quantify soil, trait and/or molecular predictors and advised on their use in study. All authors edited the final manuscript.

Corresponding author

Correspondence to Chengjin Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Juan Ernesto Guevara.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 321 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Hernández, D.I., Deane, D.C., Wang, W. et al. Direct effects of selection on aboveground biomass contrast with indirect structure-mediated effects of complementarity in a subtropical forest. Oecologia 196, 249–261 (2021). https://doi.org/10.1007/s00442-021-04915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-04915-w

Keywords

Navigation