Skip to main content

Advertisement

Log in

Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The impacts of disturbance on biodiversity and distributions have been studied in many systems. Yet, comparatively less is known about how lichens–obligate symbiotic organisms–respond to disturbance. Successful establishment and development of lichens require a minimum of two compatible yet usually unrelated species to be present in an environment, suggesting disturbance might be particularly detrimental. To address this gap, we focused on lichens, which are obligate symbiotic organisms that function as hubs of trophic interactions. Our investigation was conducted in the southern Appalachian Mountains, USA. We conducted complete biodiversity inventories of lichens (all growth forms, reproductive modes, substrates) across 47, 1-ha plots to test classic models of responses to disturbance (e.g., linear, unimodal). Disturbance was quantified in each plot using a standardized suite of habitat quality variables. We additionally quantified woody plant diversity, forest density, rock density, as well as environmental factors (elevation, temperature, precipitation, net primary productivity, slope, aspect) and analyzed their impacts on lichen biodiversity. Our analyses recovered a strong, positive, linear relationship between lichen biodiversity and habitat quality: lower levels of disturbance correlate to higher species diversity. With few exceptions, additional variables failed to significantly explain variation in diversity among plots for the 509 total lichen species, but we caution that total variation in some of these variables was limited in our study area. Strong, detrimental impacts of disturbance on lichen biodiversity raises concerns about conservation and land management practices that fail to incorporate complete estimates of biodiversity, especially from ecologically important organisms such as lichens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data accessibility

The entirety of the dataset used herein is included in Electronic Supplemental Material Appendix 1, including the georeferenced locality, elevation, aspect, slope, the number of lichens (total, micro- and macrolichens, sexual and asexual lichens, and four growth forms), disturbances scores (HQ), rock coverage, number of trees, sum of tree diameters, average annual temperature, precipitation, and net primary productivity (NPP) for each of the 47 sites. GIS layers from which the average annual temperature, precipitation, NPP were extracted are publicly available at http://www.worldclim.org/bioclim and http://www.ntsg.umt.edu/project/modis/default.php. OTU tables with taxonomic information, fasta files with representative sequences for each OTU, a metadata file and mapping file are available for download at http://dx.doi.org/10.6084/m9.figshare.1270900. All taxonomic and inventory data are freely available at http://sweetgum.nybg.org/science/vh/.

References

  • Ardelean IV, Keller C, Scheidegger C (2015) Effects of management on lichen species richness, ecological traits and community structure in the Rodnei Mountains National Park (Romania). PLoS One 10:e0145808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  PubMed  Google Scholar 

  • Arsenault A, Goward T (2016) Macrolichen diversity as an indicator of stand age and ecosystem resilience along a precipitation gradient in humid forests of inland British Columbia, Canada. Ecol Ind 69:730–738

    Article  Google Scholar 

  • Asplund J, Wardle DA (2017) How lichens impact on a terrestrial community and ecosystem properties. Biol Rev 92:1720–1738

    Article  PubMed  Google Scholar 

  • Balasundaram SV, Engh IB, Skrede I, Kauserud H (2015) How many DNA markers are needed to reveal cryptic fungal species? Fungal Biol 119:940–945

    Article  CAS  PubMed  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Barry M, McMullin RT, Horn A (2015) Edge effects on the lichen genus Lobaria in Atlantic Canadian Forests. For Chron 91:534–540

    Article  Google Scholar 

  • Bartels SF, Chen HYH (2014) Dynamics of epiphytic macrolichen abundance, diversity, and composition in boreal forest. J Appl Ecol 52:181–189

    Article  Google Scholar 

  • Bartels SF, Chen HYH (2015) Species dynamics of epiphytic macrolichens in relation to time since fire and host tree species in boreal forest. J Veg Sci 26:1124–1133

    Article  Google Scholar 

  • Bates ST, Berg-Lyons D, Lauber CL, Walters WA, Knight R, Fierer N (2012) A preliminary survey of lichen associated eukaryotes using pyrosequencing. Lichenologist 44:137–146

    Article  Google Scholar 

  • Benítez Á, Prieto M, González Y, Aragón G (2012) Effects of tropical montane forest disturbance on epiphytic macrolichens. Sci Total Environ 441:169–175

    Article  CAS  PubMed  Google Scholar 

  • Biswas SR, Mallik AU (2010) Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91:28–35

    Article  PubMed  Google Scholar 

  • Breuss O (2016) Byssoloma maderense is not endemic to Macaronesia. Evansia 33:54–62

    Article  Google Scholar 

  • Brodie J, Ball SG, Bouget FY, Chan CX, Clerk O et al (2017) Biotic interactions as drivers of algal origin and evolution. New Phytol 216:670–681

    Article  CAS  PubMed  Google Scholar 

  • Brodo IM (1961) A study of lichen ecology in central Long Island, New York. Am Midl Nat 65:290–310

    Article  Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of north America. Yale University Press, New Haven

    Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2007) Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous lichen communities in the Atlantic rain forest of northeastern Brazil. Mycol Prog 6(3):117–136

    Article  Google Scholar 

  • Chagnon PL, U’Ren JM, Miadlikowska J, Lutzoni F, Arnold AE (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia 180:181–191

    Article  PubMed  Google Scholar 

  • Coddington JA, Griswold CE, Dávila SD, Peñaranda E, Larcher SF (1991) Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems. In: Dudley EC (ed) The unity of evolutionary biology: proceedings of the fourth international congress of systematic and evolutionary biology. Dioscorides Press, Portland

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Cornelissen JH, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49

    Article  Google Scholar 

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Article  Google Scholar 

  • Dal Grande F, Widmer I, Wagner HH, Scheidegger C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172

    Article  Google Scholar 

  • Death RG (2002) Predicting invertebrate diversity from disturbance regimes in forest streams. Oikos 97:18–30

    Article  Google Scholar 

  • Dibben MJ (1980) The Chemosystematics of the Lichen Genus Pertusaria in North America North of Mexico. Milwaukee Public Museum, Milwaukee

    Google Scholar 

  • DLIA (Discover Life in America) (2017) Smokies species tally. http://dlia.org/smokies-species-tally/. Accessed 4 Sep 2017

  • Dynesius M, Zinko U (2006) Species richness correlations among primary producers in boreal forests. Divers Distrib 12:703–713

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2010) Integrating multiple landscape-scale drivers in the lichen epiphyte response: climatic setting, pollution regime and woodland spatial-temporal structure. Divers Distrib 16:43–52

    Article  Google Scholar 

  • Esslinger TL (2016) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada, Version 21. Opusc Phil 15:136–390

    Google Scholar 

  • Fernandez-Mendoza F, Kopun T, Fleischhacker A, Grube M, Muggia L (2017) ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol Ecol 26:4811–4830

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804

    Article  PubMed  Google Scholar 

  • Fleischhacker A, Grube M, Kopun T, Hafellner J, Muggia L (2015) Community analyses uncover high diversity of lichenicolous fungi in alpine habitats. Microb Ecol 70:348–360

    Article  PubMed  Google Scholar 

  • Flock JW (1978) Lichen-bryophyte distribution along a snow-covered-soil-moisture gradient, Niwot Ridge, Colorado. Arct Alp Res 10:31–47

    Article  Google Scholar 

  • García-López A, Micó E, Galante E (2012) From lowlands to highlands: searching for elevational patterns of species richness and distribution of scarab beetles in Costa Rica. Divers Distrib 18:543–553

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Henson A, Lea C, Bates ST (2013) Lichens of granitic rocks in Rocky Mountain National Park Larimer County, Colorado, U.S.A. Evansia 30:17–23

    Article  Google Scholar 

  • Hestmark G, Skogesal O, Skullerud Ø (2007) Early recruitment equals long-term relative abundance in an alpine saxicolous lichen guild. Mycologia 99:207–214

    Article  PubMed  Google Scholar 

  • Hinds JW, Hinds PL (2007) The macrolichens of New England. Memoirs of the New York botanical garden, vol 96. The New York Botanical Garden Press, Bronx

    Google Scholar 

  • Honegger R (1998) The lichen symbiosis—what is so spectacular about it? Lichenologist 30:193–212

    Article  Google Scholar 

  • Honegger R (2012) The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. In: Esser K, Lemke PA, Melton AC (eds) The mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, New York

    Google Scholar 

  • Honneger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    Article  Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–100

    Article  Google Scholar 

  • Huston M (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Huston MA (2014) Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology 95:2382–2396

    Article  Google Scholar 

  • Hutchinson GE (1953) The concept of pattern in ecology. Proc Acad Nat Sci Phila 105:1–12

    Google Scholar 

  • Johansson V, Ranius T, Snall T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 93(2):235–241

    Article  PubMed  Google Scholar 

  • Johansson V, Snäll T, Ranius T (2013) Estimates of connectivity reveal non-equilibrium epiphyte occurrence patterns almost 180 years after habitat decline. Oecologia 172(2):607–615

    Article  PubMed  Google Scholar 

  • Johst K, Huth A (2005) Testing the intermediate disturbance hypothesis: when will there be two peaks of diversity? Divers Distrib 11:111–120

    Article  Google Scholar 

  • Jüriado I, Kaasalainen U, Rikkinen J (2017) Specialist taxa restricted to threatened habitats contribute significantly to the regional diversity of Peltigera (Lecanoromycetes, Ascomycota) in Estonia. Fungal Ecol 30:76–87

    Article  Google Scholar 

  • Kessler M, Kluge J, Hemp A, Ohlemüller R (2011) A global comparative analysis of elevational species richness patterns of ferns. Global Ecol Biogeogr 20(6):868-880. https://doi.org/10.1111/j.1466-8238.2011.00653.x. (Cited by: 96)

    Article  Google Scholar 

  • Knudsen K (2007) Acarospora. In: Nash TH III, Gries C, Bungartz F (eds) Lichen flora of the greater sonoran desert region, vol 3. Lichens Unlimited, Tempe

    Google Scholar 

  • Leavitt SD, Esslinger TL, Divakar PK, Crespo A, Lumbsch HT (2016) Hidden diversity before our eyes: delimiting and describing cryptic lichen-forming fungal species in camouflage lichens (Parmeliaceae, Ascomycota). Fungal Biol 120(11):1374–1391

    Article  Google Scholar 

  • Lendemer JC (2011) A taxonomic revision of the North American species of Lepraria s.l. that produce divaricatic acid, with notes on the type species of the genus L. incana. Mycologia 103:1216–1229

    Article  CAS  PubMed  Google Scholar 

  • Lendemer JC, Allen JL (2014) Lichen biodiversity under threat from sea-level rise in the Atlantic Coastal Plain. Bioscience 64:923–931

    Article  Google Scholar 

  • Lendemer JC, Harris RC, Tripp EA (2013) The lichens and allied fungi of Great Smoky Mountains National Park: an annotated checklist with comprehensive keys. Memoirs of the New York Botanical Garden. New York Botanical Garden Press, Bronx

    Google Scholar 

  • Lendemer JC, Tripp EA, Sheard JW (2014) A review of Rinodina (Physciaceae) in Great Smoky Mountains National Park highlights the growing significance of this “island of biodiversity” in eastern North America. Bryologist 117:259–281

    Article  Google Scholar 

  • Lendemer JC, Harris RC, Ruiz AM (2016) A review of the lichens of the Dare Regional Biodiversity Hotspot in the Mid-Atlantic Coastal Plain of North Carolina, Eastern North America. Castanea 81:1–77

    Article  Google Scholar 

  • Lendemer JC, Stone HB, Tripp EA (2017) Taxonomic delimitation of the rare, eastern North American endemic lichen Santessoniella crossophylla (Pannariaceae). J Torrey Bot Soc 144:459–468

    Article  Google Scholar 

  • Limberger R, Wickham SA (2012) Disturbance and diversity at two spatial scales. Oecologia 168:785–795

    Article  PubMed  Google Scholar 

  • Lücking R (1995) Biodiversity and conservation of foliicolous lichens in Costa Rica. Mitt Eidgenöss Forsch Anst Wald Schnee Landsch 70:63–92

    Google Scholar 

  • Lücking R, dal Forno M, Moncada B, Coca LF, Vargas-Mendoza LY, Aptroot A, Arias LJ, Besal B, Bungartz F, Cabrera-Amaya DM, Cáceres MES, Chaves JL, Eliasaro S, Gutiérrez MC, Marin JEH, Herrera-Campos MA, Holgado-Rojas ME, Jonitz H, Kukwa M, Lucheta F, Madriñán S, Marcelli MP, Martins SMA, Mercado-Díaz JA, Molina JA, Morales EA, Nelson PR, Nugra F, Ortega F, Paredes T, Patiño AL, Peláez-Pulido RN, Pérez REP, Perlmutter GB, Rivas-Plata E, Robayo J, Rodríguez C, Simijaca DF, Soto-Medina E, Spielmann AA, Suárez-Corredor A, Torres J-M, Vargas CA, Yánez-Ayabaca A, Weerakoon G, Wilk K, Pacheco MC, Diazgranados M, Brokamp G, Borsch T, Gillevet PM, Sikaroodi M, Lawrey JD (2017) Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. Fungal Divers 84(1):139–207

    Article  Google Scholar 

  • Lundström J, Jonsson F, Perhans K, Gustafsson L (2013) Lichen species richness on retained aspens increases with time since clear-cutting. For Ecol Manag 293:49–56

    Article  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  • Mackey RJ, Currie DJ (2001) The diversity–disturbance relationship: is it generally strong and peaked? Ecology 82:3479–3492

    Google Scholar 

  • Magain N, Truong C, Goward T, Niu D, Goffinet B, Sérusiaux E, Vitikainen O, Lutzoni F, Miadlikowska J (2018) Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in Peltigera section Peltigera (lichenized Ascomycota: Lecanoromycetes). Taxon 67:836–870

    Article  Google Scholar 

  • McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31

    Article  Google Scholar 

  • McCain CM (2009) Global analysis of bird elevational diversity. Glob Ecol Biogeogr 18:346–360

    Article  Google Scholar 

  • McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: Encyclopedia of life sciences. Chichester: Wiley

  • McCune B, Dey J, Peck J, Heiman K, Will-Wolf S (1997) Regional gradients in lichen communities of the southeast United States. Bryologist 100:145–158

    Article  Google Scholar 

  • McDonald L, Van Woundenberg M, Dorin B, Adcock AM, McMullin RT, Cottenie K (2017) The effects of bark quality on corticolous lichen community composition in urban parks of southern Ontario. Botany 95(12):1141–1149

    Article  Google Scholar 

  • McMullin RT, Duinker PN, Cameron RP, Richardson DHS, Brodo IM (2008) Lichens of coniferous old-growth forests of southwestern Nova Scotia, Canada: diversity and present status. Bryologist 111:620–637

    Article  Google Scholar 

  • Miadlikowska J, Magain N, Pardo-De la Hoz CJ, Niu D, Goward T, Sérusiaux E, Lutzoni F (2018) Species in section Peltidea (aphthosa group) of the genus Peltigera remain cryptic after molecular phylogenetic revision. Plant Fungal Syst 63:45–64

    Article  Google Scholar 

  • Mistry J (1998) Population dynamics of the lichen genus Bulbothrix Hale as potential bioindicators of ‘time-since-last-fire’ in the cerrado of the Distrito Federal, central Brazil. Divers Distrib 4:155–165

    Article  Google Scholar 

  • Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Muggia L, Fleischhacker A, Kopun T, Grube M (2016) Extremotolerant fungi from alpine rock lichens and their phylogenetic relationships. Fungal Divers 76:119–142

    Article  PubMed  Google Scholar 

  • Muscavitch ZM, Lendemer JC, Harris RC (2017) A review of the lichen genus Phlyctis in North America (Phlyctidaceae) including the description of a new widespread saxicolous species from eastern North America. Bryologist 120:388–417

    Article  Google Scholar 

  • Nash TH (2002) Lichen Flora of the Greater Sonoran Desert region. Arizona State University, Tempe

    Google Scholar 

  • Nelson PR, McCune B, Roland C, Stehn S (2015) Non-parametric methods reveal non-linear functional trait variation of lichens along environmental and fire age gradients. J Veg Sci 26:848–865

    Article  Google Scholar 

  • Nylén T, Luoto M (2015) Primary succession, disturbance and productivity drive complex species richness patterns on land uplift beaches. J Veg Sci 26:267–277

    Article  Google Scholar 

  • O’Bryan KE, Prober SM, Lunt ID, Eldridge DJ (2009) Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland. Oecologia 159:827–838

    Article  PubMed  Google Scholar 

  • Ossowska M, Guzow-Krzemińska B, Dudek M, Oset M, Kukwa M (2018) Evaluation of diagnostic chemical and morphological characters in five Parmelia species (Parmeliaceae, lichenized Ascomycota) with special emphasis on the thallus pruinosity. Phytotaxa 383(2):165–180

    Article  Google Scholar 

  • Parkes D, Newell G, Cheal D (2003) Assessing the quality of native vegetation: the ‘habitat hectares’ approach. Ecol Manag Restor 4:S29–S38

    Article  Google Scholar 

  • Pastore AI, Prather CM, Gornish ES, Ryan WH, Ellis RD, Miller TE (2014) Testing the competition–colonization trade-off with a 32-year study of a saxicolous lichen community. Ecology 95:306–315

    Article  CAS  PubMed  Google Scholar 

  • Ray DG, Barton JW, Lendemer JC (2015) Lichen community response to prescribed burning and thinning in southern pine forests of the Mid-Atlantic coastal plain, USA. Fire Ecol 11:14–33

    Article  Google Scholar 

  • Resl P, Fernández-Mendoza F, Mayrhofer H, Spribille T (2018) The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc R Soc B 285:20180640

    Article  CAS  PubMed  Google Scholar 

  • Rivas Plata E, Lücking R, Lumbsch HT (2008) When family matters: an analysis of Thelotremataceae (lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodivers Conserv 17:1319–1351

    Article  Google Scholar 

  • Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, Aranda M, Voolstra CR (2016) Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00234

    Article  Google Scholar 

  • Shea K, Roxburgh SH, Rauscher ESJ (2004) Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol Lett 7:491–508

    Article  Google Scholar 

  • Sheil D, Burslem DFRP (2013) Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol Evol 28:571–572

    Article  PubMed  Google Scholar 

  • Shrestha G, St. Clair LL (2011) A comparison of the lichen floras of four locations in the Intermountain Western United States. N Am Fungi 6:1–20

    Google Scholar 

  • Sørensen LL, Coddington JA, Scharff N (2012) Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an afromontane forest. Pest Manag Sampl 31:319–330

    Google Scholar 

  • Svensson JR, Lindegarth M, Siccha M, Lenz M, Molis M, Wahl M, Pavia H (2007) Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity. Ecology 88:830–838

    Article  PubMed  Google Scholar 

  • Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230

    Article  CAS  PubMed  Google Scholar 

  • Tarasova VN, Obabko RP, Himelbrant DE, Boychuk MA, Stepanchikova IS, Borovichev EA (2017) Diversity and distribution of epiphytic lichens and bryophytes on aspen (Populus tremula) in the middle boreal forests of Republic of Karelia (Russia). Folia Cryptogam Estonica 54:125–141

    Article  Google Scholar 

  • Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781

    Article  PubMed  Google Scholar 

  • Tretiach M, Bertuzzi S, Carniel FC, Virgilio D (2013) Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia 173:649–663

    Article  PubMed  Google Scholar 

  • Tripp EA (2015) Lichen inventory of White Rocks Open Space (City of Boulder, Colorado). West N Am Nat 75:301–310

    Article  Google Scholar 

  • Tripp EA, Lendemer JC (2018) Twenty-seven modes of reproduction in the obligate lichen symbiosis. Brittonia 70:1–14

    Article  Google Scholar 

  • Tripp EA, Lendemer JC (2019a) Field guide to the lichens of Great Smoky Mountains National Park. University of Tennessee Press, Knoxville (in press)

    Google Scholar 

  • Tripp EA, Lendemer JC (2019b) Lichenology in great smoky mountains National Park: highlights from 10 years of research. Syst Bot. (in press)

  • Tripp EA, Lendemer JC, Barberán A, Dunn RR, Fierer N (2016) Biodiversity gradients in obligate symbiotic organisms: exploring the diversity and traits of lichen propagules across the United States. J Biogeogr 45:1667–1678

    Article  Google Scholar 

  • Tripp EA, Zhang N, Schneider H, Huang Y, Mueller GM, Hu ZH, Haggblom M, Bhattacharya D (2017) Reshaping Darwin’s tree: impact of the symbiome. Trends Ecol Evol 32:552–555

    Article  PubMed  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914

    Article  PubMed  Google Scholar 

  • Violle C, Pu Z, Jiang L (2010) Experimental demonstration of the importance of competition under disturbance. Proc Natl Acad Sci USA 107:12925–12929

    Article  PubMed  Google Scholar 

  • Weakley AS (2015) Flora of the southern and mid-Atlantic States. Working Draft 21 May 2015. http://www.herbarium.unc.edu/FloraArchives/WeakleyFlora_2015-05-29.pdf

  • Wilson JB (1994) The ‘Intermediate Disturbance Hypothesis’ of species coexistence is based on patch dynamics. N Z J Ecol 18:176–181

    Google Scholar 

  • Witman JD, Cusson M, Archambault P, Pershing AJ, Mieskowska N (2008) The relationship between productivity and species diversity in temperate-arctic marine ecosystems. Ecology 89:S66–S80

    Article  PubMed  Google Scholar 

  • Wolf JHD (1994) Factors controlling the distribution of vascular and non-vascular epiphytes in the northern Andes. Vegetatio 112:15–28

    Article  Google Scholar 

  • Wolseley PA, Aguirre-Hudson B (1997) The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand. J Biogeogr 24:327–343

    Article  Google Scholar 

  • Wootton JT (1998) Effects of disturbance on species diversity: a multitrophic perspective. Am Nat 152:803–825

    Article  CAS  PubMed  Google Scholar 

  • Yahr R, Schoch CL, Dentinger BTM (2016) Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philos Trans R Soc B 371:20150336

    Article  Google Scholar 

  • Zemanová L, Trotsiuk V, Morrissey RC, Bace R, Mikolás M, Svoboda M (2017) Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodivers Conserv 26:1943–1958

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for permission to conduct fieldwork on federal and state lands including the U.S. National Park Service (particularly, Mary Shew, Little River Canyon N.P.), U.S. Forest Service, U.S. Fish and Wildlife Service, and Alabama Department of Conservation and Natural Resources (particularly, Jo Lewis, Chief of Natural Heritage). We thank Carly Anderson Stewart and Jordan Hoffman for contributions to fieldwork and Nolan Kane, Kyle Keepers, Cloe Pogoda, and Kristin White for additional conversation. We additionally are grateful to two anonymous reviewers as well as Anne Pringle whose comments improved an earlier version of the manuscript. This research was made possible by a National Science Foundation Dimensions of Biodiversity Award to University of Colorado (Award #1542629) and New York Botanical Garden (Award #1432629).

Author information

Authors and Affiliations

Authors

Contributions

EAT, JCL, and CMM conceived the study, collected the data, conducted the analyses, and wrote the manuscript.

Corresponding author

Correspondence to Erin A. Tripp.

Ethics declarations

Conflict of interest

The authors report no conflicts of interests. The work was funded by the US National Science Foundation (see award numbers in acknowledgements).

Additional information

Communicated by Anne Pringle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 434 kb)

Supplementary material 2 (PDF 649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripp, E.A., Lendemer, J.C. & McCain, C.M. Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot. Oecologia 190, 445–457 (2019). https://doi.org/10.1007/s00442-019-04413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04413-0

Keywords

Navigation