Skip to main content
Log in

Multiple predator effects on juvenile prey survival

  • Behavioral ecology –original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Predicting multiple predator effects (MPEs) on shared prey remains one of the biggest challenges in ecology. Empirical evidence indicates that interactions among predators can alter predation rates and modify any expected linear effects on prey survival. Knowledge on predator density, identity and life-history traits is expected to help predict the behavioral mechanisms that lead to non-linear changes in predation. Yet, few studies have rigorously examined the effects of predator–predator interactions on prey survival, particularly with marine vertebrate predators. Using an additive-substitutive design, we experimentally paired reef piscivores with different hunting mode [active predator, Pseudochromis fuscus (F); ambush predators, Cephalopholis boenak (B), Epinephelus maculatus (M)] to determine how behavioral interactions modified their combined impacts on damselfish prey. Results showed that behavioral patterns among predators matched those predicted from their hunting mode. However, it was the identity of the predators what determined the strength of any positive or negative interactions, and thus the nature and magnitude of MPEs on prey survival (i.e., risk-enhancing effects: treatments BB, MM and FM; risk-reducing: BM; and linear effects: FF, FB). Given the specificity of predator–predator interactions, none of the predators were fully functionally redundant. Even when two species seemed substitutable (i.e., predators F and M), they led to vastly diverse effects when paired with additional predator species (i.e., B). We concluded that knowledge of the identity of the predator species and the behavioral interactions among them is crucial to successfully predict MPEs in natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almany GR (2003) Priority effects in coral reef fish communities. Ecology 84:1920–1935

    Article  Google Scholar 

  • Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22

    Article  Google Scholar 

  • Auster PJ, Sánchez-Jiménez A, Rodríguez-Arrieta JA, Quesada AJ, Pérez C, Naranjo-Elizondo B, Blum S, Cortés J (2016) Facilitative behavioral interactions between deepwater piscivores at Isla del Coco National Park and Las Gemelas Seamount. Costa Rica Rev Biol Trop 64:S187–S196

    Article  Google Scholar 

  • Beukers JS, Jones GP (1998) Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114:50–59

    Article  PubMed  Google Scholar 

  • Beukers-Stewart B, Jones G (2004) The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish. J Exp Mar Biol Ecol 299:155–184

    Article  Google Scholar 

  • Beukers-Stewart B, Beukers-Stewart J, Jones G (2011) Behavioural and developmental responses of predatory coral reef fish to variation in the abundance of prey. Coral Reefs 30:855–864

    Article  Google Scholar 

  • Bosiger YJ, McCormick MI (2014) Temporal links in daily activity patterns between coral reef predators and their prey. PLoS One 9:e111723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bshary R, Hohner A, Ait-el-Djoudi K, Fricke H (2006) Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol 4:e431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes JE, Stachowicz JJ (2009) The consequences of consumer diversity loss: different answers from different experimental designs. Ecology 90:2879–2888

    Article  PubMed  Google Scholar 

  • Chalcraft DR, Resetarits WJ (2003) Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84:2407–2418

    Article  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman & Hall, London

    Google Scholar 

  • Creel S, Winnie JA (2005) Responses of elk herd size to fine-scale spatial and temporal variation in the risk of predation by wolves. Anim Behav 69:1181–1189

    Article  Google Scholar 

  • Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566

    Article  CAS  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JB et al (2011) Trophic downgrading of planet earth. Science 333:301–306

    Article  CAS  PubMed  Google Scholar 

  • Evans EW (1991) Intra versus interspecific interactions of ladybeetles (Coleoptera: Coccinellidae) attacking aphids. Oecologia 87:401–408

    Article  PubMed  Google Scholar 

  • Feeney W, Lӧnnstedt O, Bosiger Y, Martin J, Jones G, Rowe R, McCormick M (2012) High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31:909–918

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  PubMed  Google Scholar 

  • Finke DL, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Cons 143:2260–2269

    Article  Google Scholar 

  • Ford JR, Swearer SE (2012) Shoaling behaviour enhances risk of predation from multiple predator guilds in a marine fish. Oecologia 172:1–11

    Google Scholar 

  • Fretwell SD (1987) Food chain dynamics: the central theory of ecology? Oikos 50:291–301

    Article  Google Scholar 

  • Golubski AJ, Abrams PA (2011) Modifying modifiers: what happens when interspecific interactions interact? J Anim Ecol 80:1097–1108

    Article  PubMed  Google Scholar 

  • Grabowski JH, Hughes AR, Kimbro DL (2008) Habitat complexity influences cascading effects of multiple predators. Ecology 89:3413–3422

    Article  PubMed  Google Scholar 

  • Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526

    Article  Google Scholar 

  • Griffen BD (2006) Detecting emergent effects of multiple predator species. Oecologia 148:702–709

    Article  PubMed  Google Scholar 

  • Griffen BD, Byers JE (2006) Intraguild predation reduces redundancy of predator species in multiple predator assemblage. J Anim Ecol 75:959–966

    Article  PubMed  Google Scholar 

  • Griffin JN, De La Haye KL, Hawkins SJ, Thompson RC, Jenkins SR (2008) Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning. Ecology 89:298–305

    Article  PubMed  Google Scholar 

  • Griffin JN, Byrnes JE, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta-analysis. Ecology 94:2180–2187

    Article  PubMed  Google Scholar 

  • Harrell F (2015) rms: Regression Modeling Strategies. R package version 4.5-0. http://CRAN.R-project.org/package=rms. Accessed 3 Feb 2017

    Chapter  Google Scholar 

  • Hixon MA (1991) Predation as a process structuring coral reef fish communities. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 475–508

    Chapter  Google Scholar 

  • Hixon MA, Jones GP (2005) Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86:2847–2859

    Article  Google Scholar 

  • Hobson ES (1979) Interactions between piscivorous fishes and their prey. In: Clepper H (ed) Predator-prey systems in fisheries management. Sport Fishing Institute, Washington, pp 231–242

    Google Scholar 

  • Hooper DU, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Ives AR, Cardinale BJ, Snyder WE (2005) A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol Lett 8:102–116

    Article  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  CAS  PubMed  Google Scholar 

  • Keeling L, Hurnik J (1993) Chickens show socially facilitated feeding behaviour in response to a video image of a conspecific. Appl Anim Behav Sci 36:223–231

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Liu M, Sadovy Y (2005) Habitat association and social structure of the chocolate hind, Cephalopholis boenak (Pisces: Serranidae: Epinephelinae), at Ping Chau Island, northeastern Hong Kong waters. Environ Biol Fishes 74:9–18

    Article  Google Scholar 

  • Losey JE, Denno RF (1998) Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152

    Google Scholar 

  • Lukoschek V, McCormick M (2002) A review of multi-species foraging associations in fishes and their ecological significance. In: Proceeding 9th International Coral Reef Symposium, vol 1, pp 467–474

  • Maurer BA (1984) Interference and exploitation in bird communities. Wilson Bull 96:380–395

    Google Scholar 

  • McCoy MW, Stier AC, Osenberg CW (2012) Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecol Lett 15:1449–1456

    Article  PubMed  Google Scholar 

  • Moya-Laraño J, Wise DH (2000) Survival regression analysis: a powerful tool for evaluating fighting and assessment. Anim Behav 60:307–313

    Article  PubMed  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  CAS  PubMed  Google Scholar 

  • Newman J (2008) A failure to test the hypothesis of interest. Science. http://science.sciencemag.org/content/319/5865/952/tab-e-letters. Accessed 3 Feb 2017

  • Nilsson E, Olsson K, Persson A, Nyström P, Svensson G, Nilsson U (2008) Effects of stream predator richness on the prey community and ecosystem attributes. Oecologia 157:641–651

    Article  PubMed  Google Scholar 

  • O’Connor NE, Grabowski JH, Ladwig LM, Bruno JF (2008) Simulated predator extinctions: predator identity affects survival and recruitment of oysters. Ecology 89:428–438

    Article  PubMed  Google Scholar 

  • Olla BL, Samet C (1974) Fish-to-fish attraction and the facilitation of feeding behavior as mediated by visual stimuli in striped mullet, Mugil cephalus. J Fish Board Canada 31:1621–1630

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org. Accessed 3 Feb 2017

  • Ramos O, Van Buskirk J (2012) Non-interactive multiple predator effects on tadpole survival. Oecologia 169:535–539

    Article  PubMed  Google Scholar 

  • Royauté R, Pruitt JN (2015) Varying predator personalities generates contrasting prey communities in an agroecosystem. Ecology 96:2902–2911

    Article  PubMed  Google Scholar 

  • Sanders D, Schaefer M, Platner C, Griffiths GJ (2011) Intraguild interactions among generalist predator functional groups drive impact on herbivore and decomposer prey. Oikos 120:418–426

    Article  Google Scholar 

  • Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426

    Article  PubMed  Google Scholar 

  • Schmitz OJ (2009) Effects of predator functional diversity on grassland ecosystem function. Ecology 90:2339–2345

    Article  PubMed  Google Scholar 

  • Schmitz OJ, Suttle KB (2001) Effects of top predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081

    Article  Google Scholar 

  • Schofield PJ (2009) Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquat Invasions 4:473–479

    Article  Google Scholar 

  • Shpigel M, Fishelson L (1989) Food habits and prey selection of three species of groupers from the genus Cephalopholis (Serranidae: Teleostei). Environ Biol Fishes 24:67–73

    Article  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  CAS  PubMed  Google Scholar 

  • Sih A, Ziemba R, Harding KC (2000) New insights on how temporal variation in predation risk shapes prey behavior. Trends Ecol Evol 15:3–4

    Article  CAS  PubMed  Google Scholar 

  • Sitvarin MI, Rypstra AL (2014) The importance of intraguild predation in predicting emergent multiple predator effects. Ecology 95:2936–2945

    Article  Google Scholar 

  • Snyder WE, Snyder GB, Finke DL, Straub CS (2006) Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789–796

    Article  PubMed  Google Scholar 

  • Sokol-Hessner L, Schmitz OJ (2002) Aggregate effects of multiple predator species on a shared prey. Ecology 83:2367–2372

    Article  Google Scholar 

  • Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

    Article  Google Scholar 

  • Soluk DA, Collins NC (1988) Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos 52:94–100

    Article  Google Scholar 

  • Soomdat NN, Griffin JN, McCoy M, Hensel MJ, Buhler S, Chejanovski Z, Silliman BR (2014) Independent and combined effects of multiple predators across ontogeny of a dominant grazer. Oikos 123:1081–1090

    Article  Google Scholar 

  • Stallings CD (2008) Indirect effects of an exploited predator on recruitment of coral-reef fishes. Ecology 89:2090–2095

    Article  PubMed  Google Scholar 

  • Stallings CD (2009) Predator identity and recruitment of coral-reef fishes: indirect effects of fishing. Mar Ecol Prog Ser 383:251–259

    Article  Google Scholar 

  • Stallings CD, Dingeldein AL (2012) Intraspecific cooperation facilitates synergistic predation. Bull Mar Sci 88:317

    Article  Google Scholar 

  • Start D, Gilbert B (2017) Predator personality structures prey communities and trophic cascades. Ecol Lett 20:366–374

    Article  PubMed  Google Scholar 

  • Stewart B, Jones G (2001) Associations between the abundance of piscivorous fishes and their prey on coral reefs: implications for prey-fish mortality. Mar Biol 138:383–397

    Article  Google Scholar 

  • Stier A, White JW (2014) Predator density and the functional responses of coral reef fish. Coral Reefs 33:235–240

    Article  Google Scholar 

  • Stier AC, Geange SW, Bolker BM (2013) Predator density and competition modify the benefits of group formation in a shoaling reef fish. Oikos 122:171–178

    Article  Google Scholar 

  • Stier AC, Stallings CD, Samhouri JF, Albins MA, Almany GR (2017) Biodiversity effects of the predation gauntlet. Coral Reefs 36:601–606

    Article  Google Scholar 

  • Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282

    Article  PubMed  Google Scholar 

  • Swisher BJ, Soluk DA, Wahl DH (1998) Non-additive predation in littoral habitats: influences of habitat complexity. Oikos 81:30–37

    Article  Google Scholar 

  • Therneau T (2015) A package for survival analysis in S. R package version 2.38. http://CRAN.R-project.org/package=survival. Accessed 3 Feb 2017

  • Thorne E, Williams ES (1988) Disease and endangered species: the black-footed ferret as a recent example. Conserv Biol 2:66–74

    Article  PubMed Central  Google Scholar 

  • Tylianakis JM, Rand TA, Kahmen A, Klein A-M, Buchmann N, Perner J, Tscharntke T (2008) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol 6:e122

    Article  CAS  PubMed Central  Google Scholar 

  • Van Son T, Thiel M (2006) Multiple predator effects in an intertidal food web. J Anim Ecol 75:25–32

    Article  PubMed  Google Scholar 

  • Vance-Chalcraft HD, Soluk DA (2005) Multiple predator effects result in risk reduction for prey across multiple prey densities. Oecologia 144:472–480

    Article  PubMed  Google Scholar 

  • Webster MS (2002) Role of predators in the early post-settlement demography of coral-reef fishes. Oecologia 131:52–60

    Article  PubMed  Google Scholar 

  • Webster MS, Almany GR (2002) Positive indirect effects in a coral reef fish community. Ecol Lett 5:549–557

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Donald Warren, Pascal Sebastian, and Bridie Allan who provided assistance in the field. We also thank the directors and staff of Lizard Island Research Station (a facility of the Australian Museum) for their continuous logistical support. This research was funded by an Ian Potter Doctoral fellowship at Lizard Island and an Australian Coral Reef Society award granted to MMP. Additional funds were provided by the ARC Centre of Excellence for Coral Reef Studies and James Cook University. Several anonymous reviewers and editors provided constructive feedback to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MMP and MIM designed the study. MMP conducted the experiment and collected all the data. MEM carried out the statistical analyses. MMP wrote the manuscript, while MEM and MIM provided substantial feedback. All authors gave final approval for publication.

Corresponding author

Correspondence to M. M. Palacios.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Deron E. Burkepile.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, M.M., Malerba, M.E. & McCormick, M.I. Multiple predator effects on juvenile prey survival. Oecologia 188, 417–427 (2018). https://doi.org/10.1007/s00442-018-4182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4182-7

Keywords

Navigation