Skip to main content
Log in

Environmental filtering determines metacommunity structure in wetland microcrustaceans

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Metacommunity approaches are becoming popular when analyzing factors driving species distribution at the regional scale. However, until the popularization of the variation partitioning technique it was difficult to assess the main drivers of the observed patterns (spatial or environmental). Here we propose a new framework linking the emergence of different metacommunity structures (e.g., nested, Gleasonian, Clementsian) to spatial and environmental filters. This is a novel approach that provides a more profound analysis of how both drivers could lead to similar metacommunity structures. We tested this framework on 110 sites covering a strong environmental gradient (i.e., microcrustacean assemblages organized along a salinity gradient, from freshwater to brackish water wetlands). First we identified the metacommunity structure that better fitted these microcrustacean assemblages. Then, we used hierarchical variation partitioning to quantify the relative influences of environmental filters and the distance among wetlands on the identified structure. Our results showed that under strong environmental filtering metacommunity structures were non-random. We also noted that even passive dispersers, that are supposed to be poorly spatially filtered, showed spatial signals at a large geographical scale. However, some difficulties arose when inferring biotic interactions at finer-scale spatial signals. Overall, our study shows the potential of elements of metacommunity structure combined with variation partition techniques to detect environmental drivers and broadscale patterns of metacommunity structure, and that some caution is needed when interpreting finer-scale spatial signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen MR (2007) Measuring and modeling dispersal of adult zooplankton. Oecologia 153:135–143. doi:10.1007/s00442-007-0704-4

    Article  PubMed  Google Scholar 

  • Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382. doi:10.1007/bf00317508

    Article  Google Scholar 

  • Attrill MJ, Rundle SD (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuar Coast Shelf Sci 55:929–936. doi:10.1006/ecss.2002.1036

    Article  Google Scholar 

  • Bagella S, Gascón S, Caria MC, Sala J, Mariani MA, Boix D (2010) Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds. Biodivers Conserv 19:1749–1768. doi:10.1007/s10531-010-9801-5

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796

    Article  Google Scholar 

  • Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana XD (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69

    Article  Google Scholar 

  • Bonada N, Rieradevall M, Dallas H, Davis J, Day J, Figueroa R, Resh VH, Prat N (2008) Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biol 53:772–788. doi:10.1111/j.1365-2427.2007.01940.x

    Article  Google Scholar 

  • Borcard D, Gillet F and Legendre P (2011) Numerical ecology with R. Use R! In: Gentleman R, Hornik K, Parmigiani GG (eds). Springer, Heidelberg Berlin New York

  • Bradley TJ (2009) Animal osmoregulation. Oxford Animal Biology Series, Oxford University Press, Oxford

  • Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J N Am Benthol Soc 30:310–327. doi:10.1899/10-129.1

    Article  Google Scholar 

  • Brucet S, Boix D, Gascón S, Sala J, Quintana XD, Badosa A, Søndergaard M, Lauridsen TL, Jeppesen E (2009) Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32:692–702

    Article  Google Scholar 

  • Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167. doi:10.1016/j.envpol.2012.10.011

    Article  PubMed  Google Scholar 

  • Cañedo-Argüelles M, Boersma KS, Bogan MT, Olden JD, Phillipsen I, Schriever TA, Lytle DA, Ladle R (2015) Dispersal strength determines meta-community structure in a dendritic riverine network. J Biogeogr 42:778–790. doi:10.1111/jbi.12457

    Article  Google Scholar 

  • Cisneros LM, Fagan ME, Willig MR (2015) Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. J Anim Ecol 84:373–385. doi:10.1111/1365-2656.12299

    Article  PubMed  Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi:10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  • Dallas T (2013) Metacom: analysis of the elements of metacommunity structure. R package version 1.2, http://CRAN.R-project.org/package=metacom

  • Dallas T, Presley SJ (2014) Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123:866–874. doi:10.1111/oik.00707

    Article  Google Scholar 

  • De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SA (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747. doi:10.1111/j.1461-0248.2012.01794.x

    Article  PubMed  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JD (eds) Ecology and evolution of communities. Belknap, Cambridge, pp 342–444

    Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122. doi:10.2307/3237229

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Dray S, Legendre P and Blanchet G (2007) packfor: forward selection with permutation (Canoco p.46). R package version 0.0-7, https://r-forge.r-project.org/R/?group_id=195. Accessed 10 October 2011

  • Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi:10.1890/11-1183.1

    Article  Google Scholar 

  • Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto PR (2014) Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–475. doi:10.1111/j.1600-0587.2013.00527.x

    Google Scholar 

  • Gauch HG (1982) Noise-reduction by eigenvector ordinations. Ecology 63:1643–1649

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26

    Article  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington

    Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  PubMed  Google Scholar 

  • Gutiérrez-Cánovas C, Millán A, Velasco J, Vaughan IP, Ormerod SJ (2013) Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecol Biogeogr 22:796–805. doi:10.1111/geb.12060

    Article  Google Scholar 

  • Hájek M, Roleček J, Cottenie K, Kintrová K, Horsák M, Poulíčková A, Hájková P, Fránková M, Dítě D (2011) Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. J Biogeogr 38:1683–1693. doi:10.1111/j.1365-2699.2011.02503.x

    Article  Google Scholar 

  • Havel J, Shurin J (2004) Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49:1229–1238. doi:10.4319/lo.2004.49.4_part_2.1229

    Article  Google Scholar 

  • Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biol 56:1703–1722. doi:10.1111/j.1365-2427.2011.02610.x

    Article  Google Scholar 

  • Heino J, Alahuhta J (2015) Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J Anim Ecol 84:427–441. doi:10.1111/1365-2656.12287

    Article  PubMed  Google Scholar 

  • Heino J, Nokela T, Soininen J, Tolkkinen M, Virtanen L, Virtanen R (2015) Elements of metacommunity structure and community-environment relationships in stream organisms. Freshwater Biol 60:973–988. doi:10.1111/fwb.12556

    Article  Google Scholar 

  • Henriques-Silva R, Lindo Z, Peres-Neto PR (2013) A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94:627–639

    Article  PubMed  Google Scholar 

  • Holyoak M, Leibold MA, Mouquet N, Holt RD, Hoopes MF (2005) Metacommunities: A framework for large-scale community ecology. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago, Chicago, pp 1–31

    Google Scholar 

  • Incagnone G, Marrone F, Barone R, Robba L, Naselli-Flores L (2015) How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750:103–123. doi:10.1007/s10750-014-2110-3

    Article  Google Scholar 

  • Jeffries MJ (2003) Idiosyncratic relationships between pond invertebrates and environmental, temporal and patch-specific predictors of incidence. Ecography 26:311–324

    Article  Google Scholar 

  • Keith SA, Newton AC, Morecroft MD, Golicher DJ, Bullock JM (2011) Plant metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos 120:302–310. doi:10.1111/j.1600-0706.2010.18775.x

    Article  Google Scholar 

  • Legendre P, Borcard D, Roberts DW (2012) Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93:1234–1240. doi:10.1890/11-2028.1

    Article  PubMed  Google Scholar 

  • Leibold MA, Mikkelson GM (2002) Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237–250

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lewinsohn TM, Inácio Prado P, Jordano P, Bascompte J, Olesen JM (2006) Structure in plant–animal interaction assemblages. Oikos 113:174–184. doi:10.1111/j.0030-1299.2006.14583.x

    Article  Google Scholar 

  • Lopez LCS, Gonçalves DA, Mantovani A, Rios RI (2002) Bromeliad ostracods pass through amphibian (Scinaxax perpusillus) and mammalian guts alive. Hydrobiologia 485:209–211. doi:10.1023/a:1021315223774

    Article  Google Scholar 

  • Louette G, De Meester L (2005) High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86:353–359

    Article  Google Scholar 

  • McAbendroth L, Foggo A, Rundle SD, Bilton DT (2005) Unravelling nestedness and spatial pattern in pond assemblages. J Anim Ecol 74:41–49

    Article  Google Scholar 

  • Mergeay J, De Meester L, Eggermont H, Verschuren D (2011) Priority effects and species sorting in a long paleoecological record of repeated community assembly through time. Ecology 92:2267–2275. doi:10.1890/10-1645.1

    Article  PubMed  Google Scholar 

  • Meynard CN, Lavergne S, Boulangeat I, Garraud L, Van Es J, Mouquet N, Thuiller W, Gillman LN (2013) Disentangling the drivers of metacommunity structure across spatial scales. J Biogeogr 40:1560–1571. doi:10.1111/jbi.12116

    Article  PubMed  PubMed Central  Google Scholar 

  • Nekola JC, White PS (1999) Special paper: the distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH and Wagner H (2013) vegan: community ecology package. R package version 2.0-9, http://CRAN.R-project.org/package=vegan (Accessed 10 October 2011)

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Poff NL, Pyne MI, Bledsoe BP, Cuhaciyan CC, Carlisle DM (2010) Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. J N Am Benthol Soc 29:1441–1458. doi:10.1899/10-030.1

    Article  Google Scholar 

  • Presley SJ, Willig MR (2010) Bat metacommunity structure on Caribbean islands and the role of endemics. Global Ecol Biogeogr 19:185–199. doi:10.1111/j.1466-8238.2009.00505.x

    Article  Google Scholar 

  • Presley SJ, Higgins CL, Lopez-Gonzalez C, Stevens RD (2009) Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple ordination axes. Oecologia 160:781–793. doi:10.1007/s00442-009-1341-x

    Article  PubMed  Google Scholar 

  • Presley SJ, Higgins CL, Willig MR (2010) A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908–917. doi:10.1111/j.1600-0706.2010.18544.x

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing, http://www.R-project.org/(Accessed 10 October 2011)

  • Ruhí A, Chappuis E, Escoriza D, Jover M, Sala J, Boix D, Gascón S, Gacia E (2014) Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach. Hydrobiologia 723:25–39. doi:10.1007/s10750-013-1514-9

    Article  Google Scholar 

  • Sahuquillo M, Miracle MR (2013) The role of historic and climatic factors in the distribution of crustacean communities in Iberian Mediterranean ponds. Freshwater Biol 58:1251–1266. doi:10.1111/fwb.12124

    Article  Google Scholar 

  • Sohn IG (1996) Possible passive distribution of ostracodes by high-altitude winds. Micropaleontology 42:390–391

    Article  Google Scholar 

  • Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12. doi:10.1111/j.2006.0906-7590.04817.x

    Article  Google Scholar 

  • Sokol ER, Brown BL, Carey CC, Tornwall BM, Swan CM, Barrett JE (2015) Linking management to biodiversity in built ponds using metacommunity simulations. Ecol Model 296:36–45. doi:10.1016/j.ecolmodel.2014.10.022

    Article  Google Scholar 

  • Stone L, Roberts A (1992) Competitive exclusion, or species aggregation? Oecologia 91:419–424. doi:10.1007/bf00317632

    Article  Google Scholar 

  • Talling JF and Driver D (1963) Some problems in the estimation of chlorophyll a in phytoplankton. In: Doty MS (ed) Proceedings of the Conference on Primary Productivity Measurement, Marine and Freshwater. University of Hawaii, Honolulu. USA Atomic Energy Commission, Division of Technical Information TID 7633, Hawaii, pp 142–146

  • Tilman D (1982) Resource competition and community structure. Princeton University, Princeton

    Google Scholar 

  • Tornés E, Ruhí A (2013) Flow intermittency decreases nestedness and specialisation of diatom communities in Mediterranean rivers. Freshwater Biol 58:2555–2566. doi:10.1111/fwb.12232

    Article  Google Scholar 

  • Waterkeyn A, Grillas P, Vanschoenwinkel B, Brendonck L (2008) Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biol 53:1808–1822

    Article  CAS  Google Scholar 

  • Williams WD (2001) Anthropogenic salinisation of inland waters. Hydrobiologia 466:329–337

    Article  Google Scholar 

  • Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1997) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20. doi:10.1007/s004420050348

    Article  Google Scholar 

Download references

Acknowledgments

We would like to dedicate this paper to the memory of Dr. Maria Rieradevall, who was a passionate scientist and a beautiful person. We wish to thank the handling editor Dr. William Resetarits, and two anonymous reviewers, for constructive suggestions that improved the manuscript. Special thanks are due to Antoni Munné and Carolina Solà from the Catalan Water Agency for their encouragement and facilities while conducting this applied research. This work was financially supported by the Catalan Water Agency, the Ministerio de Ciencia e Innovación (CGL2011-23907), and the Generalitat de Catalunya (ref. 2014 SGR 484).

Author contribution statement

S. G., I. A., A. R., J. S., X. Q. and D. B. conceived the ideas; all authors participated in the data collection; S. G., I. A., and A. R. analyzed the results; S. G. wrote the first draft of the manuscript, and coordinated revisions. All authors contributed to the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Gascón.

Additional information

Communicated by William J. Resetarits.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gascón, S., Arranz, I., Cañedo-Argüelles, M. et al. Environmental filtering determines metacommunity structure in wetland microcrustaceans. Oecologia 181, 193–205 (2016). https://doi.org/10.1007/s00442-015-3540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3540-y

Keywords

Navigation