Skip to main content

Advertisement

Log in

Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Drought has the potential to influence the emission of biogenic volatile organic compounds (BVOCs) from forests and thus affect the oxidative capacity of the atmosphere. Our understanding of these influences is limited, in part, by a lack of field observations on mature trees and the small number of BVOCs monitored. We studied 50- to 60-year-old Pinus ponderosa trees in a semi-arid forest that experience early summer drought followed by late-summer monsoon rains, and observed emissions for five BVOCs—monoterpenes, methylbutenol, methanol, acetaldehyde and acetone. We also constructed a throughfall-interception experiment to create “wetter” and “drier” plots. Generally, trees in drier plots exhibited reduced sap flow, photosynthesis, and stomatal conductances, while BVOC emission rates were unaffected by the artificial drought treatments. During the natural, early summer drought, a physiological threshold appeared to be crossed when photosynthesis ≅2 μmol m−2 s−1 and conductance ≅0.02 mol m−2 s−1. Below this threshold, BVOC emissions are correlated with leaf physiology (photosynthesis and conductance) while BVOC emissions are not correlated with other physicochemical factors (e.g., compound volatility and tissue BVOC concentration) that have been shown in past studies to influence emissions. The proportional loss of C to BVOC emission was highest during the drought primarily due to reduced CO2 assimilation. It appears that seasonal drought changes the relations among BVOC emissions, photosynthesis and conductance. When drought is relaxed, BVOC emission rates are explained mostly by seasonal temperature, but when seasonal drought is maximal, photosynthesis and conductance—the physiological processes which best explain BVOC emission rates—decline, possibly indicating a more direct role of physiology in controlling BVOC emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aalto J, Kolari P, Hari P, Kerminen V-M, Schiestl-Aalto P, Aaltonen H, Levula J, Siivola E, Kulmala M, Bäck J (2014) New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences 11:1331–1344

    Article  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  CAS  PubMed  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462

    Article  Google Scholar 

  • Blanch JS, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131:211–225

    CAS  PubMed  Google Scholar 

  • Bourtsoukidis E, Kawaletz H, Radacki D, Schütz S, Hakola H, Hellén H, Noe S, Mölder I, Ammer C, Bonn B (2014) Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina. Trees Struct Funct 28:193–204

    Article  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001) An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol 21:589–598

    Article  CAS  PubMed  Google Scholar 

  • Cojocariu C, Kreuzwieser J, Rennenberg H (2004) Correlation of short-chained carbonyls emitted from Picea abies with physiological and environmental parameters. New Phytol 162:717–727

    Article  CAS  Google Scholar 

  • Cook BI, Seager R (2013) The response of the North American Monsoon to increased greenhouse gas forcing. J Geophys Res Atmos 118:1690–1699

    Article  Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Niinemets Ü (2014) Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot 100:55–63

    Article  CAS  Google Scholar 

  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spec Rev 26:223–257

    Article  Google Scholar 

  • Eller ASD, de Gouw J, Graus M, Monson RK (2012) Variation among different genotypes of hybrid poplar with regard to leaf volatile organic compound emissions. Ecol Appl 22:1865–1875

    Article  PubMed  Google Scholar 

  • Eller ASD, Harley P, Monson RK (2013) Potential contribution of exposed resin to ecosystem emissions of monoterpenes. Atmos Environ 77:440–444

    Article  CAS  Google Scholar 

  • Fang C, Monson R, Cowling E (1996) Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles. Tree Physiol 16:441–446

    Article  PubMed  Google Scholar 

  • Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31:311–318

    Article  CAS  Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjoerring JK, Granier C, Neftel A, Isaksen ISA, Laj P, Mainone M, Monks PS, Durkhardt J, Daemmgen U, Neirynch J, Personne E, Wichink-Kruit R, Butterbach-Bahl K, Flechard C, Tuovinen JP, Coyle M, Gerosa G, Loubet B, Altimir N, Gruenhage L, Ammann C, Cieslik S, Paoletti E, Mikkelsen TN, Ro-Poulsen H, Cellier P, Cape JN, Horváth Loreto F, Niinemets Ü, Palmer PI, Rinne J, Misztal P, Nemitz E, Milsson D, Pryor S, Gallagher MW, Vesala T, Skiba U, Brüggemann N, Zechmeister-Boltenstern S, Williams J, O’Dowd C, Facchini MC, de Leeuw G, Flossman A, Chaumerliac N, Erisman JW (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267

    Article  CAS  Google Scholar 

  • Goldstein AH, Koven CD, Heald CL, Fung IY (2009) Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the Southeastern United States. Proc Natl Acad Sci 106:8835–8840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray DW, Lerdau MT, Goldstein AH (2003) Influences of temperature history, water stress, and needle age on methylbutenol emissions. Ecology 84:765–776

    Article  Google Scholar 

  • Grote R, Lavoir A, Rambal S, Staudt M, Zimmer I, Schnitzler J (2009) Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy. Oecologia 160:213–223

    Article  PubMed  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609

    Article  Google Scholar 

  • Hansen U, Seufert G (1999) Terpenoid emission from Citrus sinensis (L.) Osbeck under drought stress. Phys Chem Earth Ser B Hydrol Oceans Atmos 42:681–687

    Article  Google Scholar 

  • Harley P, Fridd-Stroud V, Greenberg J, Guenther A, Vasconcellos P (1998) Emission of 2-methyl-3-buten-2-ol by pines: a potentially large natural source of reactive carbon to the atmosphere. J Geophys Res 103:479–486

    Google Scholar 

  • Harley P, Eller ASD, Guenther A, Monson RK (2014) Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: controls by light, temperature and stomatal conductance. Oecologia 176:35–55

    Article  PubMed  Google Scholar 

  • Janson R, de Serves C (2001) Acetone and monoterpene emissions from the boreal forest in northern Europe. Atmos Environ 35:4629–4637

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Article  CAS  PubMed  Google Scholar 

  • Lavoir A, Staudt M, Schnitzler JP, Landais D, Massol F, Rocheteau A, Rodriguez R, Zimmer I, Rambal S (2009) Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences 6:1167–1180

    Article  CAS  Google Scholar 

  • Lerdau MT, Matson P, Fall R, Monson R (1995) Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii). Ecology 76:2640–2647

    Article  Google Scholar 

  • Lerdau M, Guenther A, Monson R (1997) Plant production and emission of volatile organic compounds. Bioscience 47:373–383

    Article  Google Scholar 

  • Litvak ME, Madronich S, Monson RK (1999) Herbivore-induced monoterpene emissions from coniferous forests: potential impact on local tropospheric chemistry. Ecol Appl 9:1147–1159

    Article  Google Scholar 

  • Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373

    Google Scholar 

  • Llusià J, Peñuelas J, Alessio GA, Estiarte M (2008) Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental drought in a Mediterranean shrubland. Int J Plant Sci 169:637–645

    Article  Google Scholar 

  • Llusià J, Peñuelas J, Prieto P, Estiarte M (2009) Net ecosystem exchange and whole plant isoprenoid emissions by a Mediterranean shrubland exposed to experimental climate change. Russ J Plant Phys 56:29–37

    Article  Google Scholar 

  • Llusià J, Peñuelas J, Alessio GA, Ogaya R (2011) Species-specific, seasonal, inter-annual, and historically-accumulated changes in foliar terpene emission rates in Phillyrea latifolia and Quercus ilex submitted to rain exclusion in the Prades Mountains (Catalonia). Russ J Plant Physiol 58:126–132

    Article  Google Scholar 

  • Llusià J, Peñuelas J, Guenther A, Rapparini F (2013) Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain. Atmos Environ 70:149–158

    Article  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Monson RK (2002) Volatile organic compound emissions from terrestrial ecosystems: a primary biological control over atmospheric chemistry. Israel J Chem 42:29–42

    Article  CAS  Google Scholar 

  • Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agric For Metereol 10:1467–1477

    Article  Google Scholar 

  • Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–154

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res 108:4208

    Article  Google Scholar 

  • Ortega J, Turnipseed A, GuentherAB Karl TG, Day DA et al (2014) Overview of the Manitou experimental forest observatory: site description and selected science results from 2008–2013. Atmos Chem Phys Disc 14:1–62

    Google Scholar 

  • Park JH, Goldstein AH, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341:643–647

    Article  CAS  PubMed  Google Scholar 

  • Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Mallhi Y, Guenther A (2004) Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmos Environ 38:6149–6156

    Article  CAS  Google Scholar 

  • Peñuelas J, Staudt M (2009) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  Google Scholar 

  • Schade GW, Goldstein AH (2002) Plant physiological influences on the fluxes of oxygenated volatile organic compounds from ponderosa pine trees. J Geophys Res Atmos 107:4087

    Article  Google Scholar 

  • Schade GW, Goldstein AH, Gray DW, Lerdau MT (2000) Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation. Atmos Environ 34:3535–3544

    Article  CAS  Google Scholar 

  • Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499

    Article  CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Sharkey TD, Monson RK (2014) The future of isoprene emission from leaves, canopies and landscapes. Plant Cell Environ 37:SI1727–SI1740

    Article  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Ennajah A, Mouillt F, Joffre R (2008) Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought? Can J For Res 38:2965–2975

    Article  CAS  Google Scholar 

  • Trowbridge AM, Daly RW, Helmig D, Stoy PC, Monson RK (2014) Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests. Ecology 95:1591–1603

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andrew Turnipseed (National Center for Atmospheric Research; NCAR) for the collection of meteorological data and analysis of GC–MS samples, Tiffany Duhl (NCAR) and Gift Pornsawan Poopat (University of Colorado, Boulder) for their help in analyzing the GC–MS samples, and Peter Harley (NCAR) for comments and recommendations on the manuscript. We also thank the US Forest Service Research Laboratory in Fort Collins, and especially Richard Oakes and Dr Michael Ryan for their assistance in facilitating research at the Manitou Experimental Forest. Funding for this research was provided by the National Science Foundation, Division of Atmospheric and Geospace Sciences Grant no. 0919189. The experiments comply with the current laws of the USA, where the research was performed.

Author contribution statement

A. S. D. E., L. L. Y. and A. M. T. conducted the research for the study. R. K. M. conceived the study, provided resources and instruments for the study and obtained funding to conduct the study. A. S. D. E., A. M. T., L. L. Y. and R. K. M. wrote the manuscript and all authors provided editorial advice and contributed to subsequent revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyson S. D. Eller.

Additional information

Communicated by Ylo Niinemets.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eller, A.S.D., Young, L.L., Trowbridge, A.M. et al. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Oecologia 180, 345–358 (2016). https://doi.org/10.1007/s00442-015-3474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3474-4

Keywords

Navigation