Skip to main content
Log in

Roles of the volatile terpene, 1,8-cineole, in plant–herbivore interactions: a foraging odor cue as well as a toxin?

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Olfaction is an important sense for many animals, yet its role in foraging by herbivores is poorly known. Many plants contain volatile compounds, such as terpenes, that are not only volatile but can be toxic if ingested. Volatile terpenes can be used by herbivores to assess leaf quality, but there is little evidence for whether they are also used as a searching cue. We applied the giving-up density (GUD) framework to examine fine-scale foraging by two free-ranging mammalian herbivores, the brush-tail possum (Trichosurus vulpecula) and the swamp wallaby (Wallabia bicolor), using patches with food and an inedible matrix that varied in content of a volatile terpene, 1,8-cineole. We tested the effect of (1) increasing dietary cineole concentration, and (2) masking the food odor by adding cineole to the inedible matrix, thus overriding the smell released by the diet. In both species GUD was affected by dietary cineole; a high cineole concentration raised GUD, consistent with its role as a toxin. There was a significant effect of masking on GUD for wallabies but not for possums, suggesting that odor was an important foraging cue at the feeding patch only for the former. Differences in ecological niche and diet may explain this pattern. We suggest that herbivores, such as the swamp wallaby, opportunistically eavesdrop on plant volatiles, i.e., take advantage of the signal proffered for a different function. The cost of this eavesdropping for plants, however, is presumably counteracted by other ecological benefits of these volatiles, including a reduction in leaf consumption as a function of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acamovic T, Brooker J (2005) Biochemistry of plant secondary metabolites and their effects in animals. Proc Nutr Soc 64:403

    Article  CAS  PubMed  Google Scholar 

  • Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144

    Article  PubMed  Google Scholar 

  • Boland DJ, Brophy JJ (1993) Essential oils of the eucalypts and related genera. In: Bioactive volatile compounds from plants, vol 525. American Chemical Society, pp 72–87. doi: 10.1021/bk-1993-0525.ch007

  • Boyle RR, McLean S (2004) Constraint of feeding by chronic ingestion of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). J Chem Ecol 30:757–775. doi:10.1023/b:joec.0000028430.92739.83

    Article  CAS  PubMed  Google Scholar 

  • Boyle R, McLean S, Foley WJ, Davies NW (1999) Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J Chem Ecol 25:2109–2126

    Article  CAS  Google Scholar 

  • Boyle R, McLean S, Foley WJ, Moore BD, Davies NW, Brandon S (2000) Fate of the dietary terpene, p-cymene, in the male koala. J Chem Ecol 26:1095–1111. doi:10.1023/a:1005482207995

    Article  CAS  Google Scholar 

  • Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47. doi:10.1007/BF00395696

    Article  Google Scholar 

  • Campbell-Palmer R, Rosell F (2011) The importance of chemical communication studies to mammalian conservation biology: a review. Biol Conserv 144:1919–1930. doi:10.1016/j.biocon.2011.04.028

    Article  Google Scholar 

  • Carthey AJR, Bytheway JP, Banks PB (2011) Negotiating a noisy, information-rich environment in search of cryptic prey: olfactory predators need patchiness in prey cues. J Anim Ecol 80:742–752. doi:10.1111/j.1365-2656.2011.01817.x

    Article  PubMed  Google Scholar 

  • Castillejos L, Calsamiglia S, Ferret A, Losa R (2005) Effects of a specific blend of essential oil compounds and the type of diet on rumen microbial fermentation and nutrient flow from a continuous culture system. Anim Feed Sci Technol 119:29–41. doi:10.1016/j.anifeedsci.2004.12.008

    Article  CAS  Google Scholar 

  • Chang S-T, Cheng S-S (2002) Antitermitic activity of leaf essential oils and components from Cinnamomum osmophleum. J Agric Food Chem 50:1389–1392. doi:10.1021/jf010944n

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-S, Liu J-Y, Tsai K-H, Chen W-J, Chang S-T (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400. doi:10.1021/jf0497152

    Article  CAS  PubMed  Google Scholar 

  • Cheng S–S, Liu J-Y, Chang E-H, Chang S-T (2008) Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour Technol 99:5145–5149. doi:10.1016/j.biortech.2007.09.013

    Article  CAS  PubMed  Google Scholar 

  • Claridge AW, Trappe JM, Claridge DL (2001) Mycophagy by the swamp wallaby (Wallabia bicolor). Wildl Res 28:643–645. doi:10.1071/WR00105

    Article  Google Scholar 

  • Close D, McArthur C, Paterson S, Fitzgerald H, Walsh A, Kincade T (2003) Photo inhibition: a link between effects of the environment on eucalypt leaf chemistry and herbivory. Ecology 84:2952–2966. doi:10.1890/02-0531

    Article  Google Scholar 

  • Conover MR (2007) Predator-prey dynamics: the role of olfaction. CRC Press, Boca Raton

    Book  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manage Sci 63:524–554. doi:10.1002/ps.1378

    Article  CAS  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94. doi:10.1242/jeb.00733

    Article  PubMed  Google Scholar 

  • Danks MA (2012) Gut-retention time in mycophagous mammals: a review and a study of truffle-like fungal spore retention in the swamp wallaby. Fungal Ecol 5:200–210. doi:10.1016/j.funeco.2011.08.005

    Article  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175. doi:10.1016/j.tplants.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Didry N, Dubreuil L, Pinkas M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25–28. doi:10.1016/0031-6865(94)90027-2

    Article  CAS  PubMed  Google Scholar 

  • Donaldson R, Stoddart M (1994) Detection of hypogeous fungi by Tasmanian bettong (Bettongia gaimardi: Marsupialia; Macropodoidea). J Chem Ecol 20:1201–1207. doi:10.1007/bf02059754

    Article  CAS  PubMed  Google Scholar 

  • Duncan AJ, Milne JA (1993) Effects of oral administration of brassica secondary metabolites, allyl cyanide, allyl isothiocyanate and dimethyl disulphide, on the voluntary food intake and metabolism of sheep. Br J Nutr 70:631–645. doi:10.1079/BJN19930154

    Article  CAS  PubMed  Google Scholar 

  • Dziba LE, Provenza FD (2008) Dietary monoterpene concentrations influence feeding patterns of lambs. Appl Anim Behav Sci 109:49–57. doi:10.1016/j.applanim.2007.02.003

    Article  Google Scholar 

  • Edwards PB, Wanjura WJ, Brown WV (1993) Selective herbivory by Christmas beetles in response to intraspecific variation in Eucalyptus terpenoids. Oecologia 95:551–557. doi:10.1007/BF00317440

    Google Scholar 

  • Fedriani JM, Boulay R (2006) Foraging by fearful frugivorous: combined effect of fruit ripening and predation risk. Funct Ecol 20:1070–1079

    Article  Google Scholar 

  • Fey K, Banks PB, Ylönen H, Korpimäki E (2010) Behavioural responses of voles to simulated risk of predation by a native and an alien mustelid: an odour manipulation experiment. Wildl Res 37:273–282. doi:10.1071/WR08031

    Article  Google Scholar 

  • Foley WJ (1992) Nitrogen and energy retention and acid-base status in the common ringtail possum (Pseudocheirus peregrinus): evidence of the effects of absorbed allelochemicals. Physiol Zool 65:403–421

    CAS  Google Scholar 

  • Foley WJ, McArthur C (1994) The effects and costs of allelochemicals for mammalian herbivores: an ecological perspective. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge, pp 370–391

    Chapter  Google Scholar 

  • Foley WJ, McLean S, Cork SJ (1995) Consequences of biotransformation of plant secondary metabolites on acid-base metabolism in mammals—a final common pathway? J Chem Ecol 21:721–743. doi:10.1007/bf02033457

    Article  CAS  PubMed  Google Scholar 

  • Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: the role of plant secondary compounds. Am Nat 108:269. doi:10.1086/282907

    Article  CAS  Google Scholar 

  • Freeland WJ, Winter JW (1975) Evolutionary consequences of eating: Trichosurus vulpecula (marsupialia) and the genus Eucalyptus. J Chem Ecol 1:439–455. doi:10.1007/BF00988585

    Article  Google Scholar 

  • Hădărugă NG, Branic AG, Hădărugă DI, Gruia A, Pleşa C, Costescu C, Ardelean A, Lupea AX (2011) Comparative study of Juniperus communis and Juniperus virginiana essential oil: TLC and GC analysis. J Planar Chromatogr-Mod TLC 24:130–135. doi:10.1556/JPC.24.2011.2.9

    Article  Google Scholar 

  • Hamish Cochrane C, Norton DA, Miller CJ, Allen RB (2003) Brushtail possum (Trichosurus vulpecula) diet in a north Westland mixed-beech (Nothofagus) forest. N Z J Ecol 27:61–65

    Google Scholar 

  • Harper MJ (2005) Home range and den use of common brushtail possums (Trichosurus vulpecula) in urban forest remnants. Wildl Res 32:681–687. doi:10.1071/WR04072

    Article  Google Scholar 

  • Haynes KF, Yeargan KV (1999) Exploitation of intraspecific communication systems: illicit signalers and receivers. Ann Entomol Soc Am 92:960–970

    Google Scholar 

  • Hochman V, Kotler BP (2007) Patch use, apprehension, and vigilance behavior of Nubian Ibex under perceived risk of predation. Behav Ecol 18:368–374. doi:10.1093/beheco/arl087

    Article  Google Scholar 

  • Hollis C, Robertshaw J, Harden R (1986) Ecology of the swamp wallaby (Wallabia bicolor) in northeastern New South Wales. I. Diet. Wildl Res 13:355–365. doi:10.1071/WR9860355

    Article  Google Scholar 

  • Hooth MJ, Sills RC, Burka LT, Haseman JK, Witt KL, Orzech DP, Fuciarelli AF, Graves SW, Johnson JD, Bucher JR (2004) Toxicology and carcinogenesis studies of microencapsulated trans-cinnamaldehyde in rats and mice. Food Chem Toxicol 42:1757–1768. doi:10.1016/j.fct.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • Hoskins JA (1984) The occurrence, metabolism and toxicity of cinnamic acid and related compounds. J Appl Toxicol 4:283–292. doi:10.1002/jat.2550040602

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Ho SH (1998) Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J Stored Prod Res 34:11–17. doi:10.1016/S0022-474X(97)00038-6

    Article  CAS  Google Scholar 

  • Hughes NK, Price CJ, Banks PB (2010) Predators are attracted to the olfactory signals of prey. PLoS ONE 5:e13114. doi:10.1371/journal.pone.0013114

    Article  PubMed Central  PubMed  Google Scholar 

  • Hulley IM, Viljoen AM, Tilney PM, Van Vuuren SF, Kamatou GPP, Van Wyk BE (2010) The ethnobotany, leaf anatomy, essential oil variation and biological activity of Pteronia incana (Asteraceae). S Afr J Bot 76:668–675. doi:10.1016/j.sajb.2010.08.007

    Article  CAS  Google Scholar 

  • Hume ID (1999) Marsupial nutrition. Cambridge University Press, Melbourne

    Google Scholar 

  • Kim H-K, Kim J-R, Ahn Y-J (2004) Acaricidal activity of cinnamaldehyde and its congeners against Tyrophagus putrescentiae (Acari: Acaridae). J Stored Prod Res 40:55–63. doi:10.1016/S0022-474X(02)00075-9

    Article  CAS  Google Scholar 

  • Kirmani SN, Banks PB, McArthur C (2010) Integrating the costs of plant toxins and predation risk in foraging decisions of a mammalian herbivore. Oecologia 164:349–356. doi:10.1007/s00442-010-1717-y

    Article  PubMed  Google Scholar 

  • Kotler BP, Brown JS, Hasson O (1991) Factors affecting gerbil foraging behavior and rates of owl predation. Ecology 72:2249–2260

    Article  Google Scholar 

  • Kotler BP, Brown JS, Hickey M (1999) Food storability and the foraging behavior of fox squirrels (Sciurus niger). Am Midl Nat 142:77–86. doi:10.1674/0003-0031(1999)142

    Article  Google Scholar 

  • Kyriazakis I, Anderson DH, Duncan AJ (1998) Conditioned flavour aversions in sheep: the relationship between the dose rate of a secondary plant compound and the acquisition and persistence of aversions. Br J Nutr 79:55–62. doi:10.1079/Bjn19980009

    Article  CAS  PubMed  Google Scholar 

  • Laska M (1990) Olfactory discrimination ability in short-tailed fruit bat, Carollia perspicillata (Chiroptera: Phyllostomatidae). J Chem Ecol 16:3291–3299. doi:10.1007/bf00982099

    Article  CAS  PubMed  Google Scholar 

  • Launchbaugh KL, Provenza FD (1993) Can plants practice mimicry to avoid grazing by mammalian herbivores? Oikos 66:501–504. doi:10.2307/3544945

    Article  Google Scholar 

  • Lawler IR, Stapley J, Foley WJ, Eschler BM (1999) Ecological example of conditioned flavor aversion in plant–herbivore interactions: effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brush tail possums. J Chem Ecol 25:401–415. doi:10.1023/A:1020863216892

    Article  CAS  Google Scholar 

  • Lawler IR, Foley WJ, Eschler BM (2000) Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivore. Ecology 81:1327–1338. doi:10.1890/0012-9658(2000)081

    Article  Google Scholar 

  • Loney PE, McArthur C, Sanson GD, Davies NW, Close DC, Jordan GJ (2006) How do soil nutrients affect within-plant patterns of herbivory in seedlings of Eucalyptus nitens? Oecologia 150:409–420. doi:10.1007/s00442-006-0525-x

    Article  PubMed  Google Scholar 

  • Low PA (2011) Insects eating Eucalypts: a highly volatile situation? Direct and indirect effects of host plant quality on eucalypt-feeding insect herbivores. In: School of biological sciences, vol. Bachelor of Science (Advanced) with Honours. University of Sydney, Sydney

  • MacLennan DG (1984) The feeding behaviour and activity patterns of the brush tail possum, Trichosurus vulpecula, in an open eucalypt woodland in southeast Queensland. In: Smith A, Hume ID (eds) Possums and gliders. S. Beatty in association with the Australian Mammal Society, Sydney, pp 155–161

    Google Scholar 

  • Marsh KJ, Wallis IR, McLean S, Sorensen JS, Foley WJ (2006) Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets. Ecology 87:2103–2112. doi:10.1890/0012-9658(2006)87

    Article  PubMed  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Nat Acad Sci 92:2036–2040

    Article  CAS  PubMed  Google Scholar 

  • May MD, Bowen MT, McGregor IS, Timberlake W (2012) Rubbings deposited by cats elicit defensive behavior in rats. Physiol Behav 107:711–718. doi:10.1016/j.physbeh.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  • McArthur C, Bradshaw Oliver S, Jordan Gregory J, Clissold Fiona J, Pile Adele J (2010) Wind affects morphology, function, and chemistry of eucalypt tree seedlings. Int J Plant Sci 171:73–80

    Article  Google Scholar 

  • McArthur C, Orlando P, Banks PB, Brown JS (2012) The foraging tightrope between predation risk and plant toxins: a matter of concentration. Funct Ecol 26:74–83. doi:10.1111/j.1365-2435.2011.01930.x

    Article  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026. doi:10.2307/3870054

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLean S, Foley WJ (1997) Metabolism of Eucalyptus terpenes by herbivorous marsupials. Drug Metab Rev 29:213–218. doi:10.3109/03602539709037582

    Article  CAS  PubMed  Google Scholar 

  • Miller AM, McArthur C, Smethurst PJ (2006) Characteristics of tree seedlings and neighbouring vegetation have an additive influence on browsing by generalist herbivores. For Ecol Manage 228:197–205. doi:10.1016/j.foreco.2006.03.003

    Article  Google Scholar 

  • Miller AM, McArthur C, Smethurst PJ (2007) Effects of within-patch characteristics on the vulnerability of a plant to herbivory. Oikos 116:41–52. doi:10.1111/j.2006.0030-1299.15331.x

    Article  Google Scholar 

  • Montague TL, Pollock DC, Wright W (1990) An examination of the browsing animal problem in australian eucalypt and pine plantations. In: Vertebrate Pest Conference Proceedings collection. DigitalCommons@ University of Nebraska—Lincoln, University of Nebraska, Lincoln, pp 203–208

  • O’Reilly-Wapstra J, McArthur C, Potts B (2002) Genetic variation in resistance of Eucalyptus globulus to marsupial browsers. Oecologia 130:289–296. doi:10.1007/s004420100797

    Google Scholar 

  • O’Reilly-Wapstra JM, McArthur C, Potts BM (2004) Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Funct Ecol 18:677–684. doi:10.1111/j.0269-8463.2004.00887.x

    Article  Google Scholar 

  • O’Reilly-Wapstra JM, Potts BM, McArthur C, Davies NW, Tilyard P (2005) Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in an Eucalyptus species. J Chem Ecol 31:357–375

    Article  PubMed  Google Scholar 

  • Pallini A, Janssen A, Sabelis MW (1997) Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110:179–185. doi:10.1007/s004420050147

    Article  Google Scholar 

  • Penfold AR (1948) The volatile oils of the australian flora. Australian and New Zealand Association for the Advancement of Science, Tasmania

  • Plepys D, Ibarra F, Francke W, Löfstedt C (2002) Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99:75–82. doi:10.1034/j.1600-0706.2002.990108.x

    Article  CAS  Google Scholar 

  • Price CJ, Banks PB (2012) Exploiting olfactory learning in alien rats to protect birds’ eggs. Proc Natl Acad Sci 109:19304–19309. doi:10.1073/pnas.1210981109

    Article  CAS  PubMed  Google Scholar 

  • Provenza FD, Kimball BA, Villalba JJ (2000) Roles of odor, taste, and toxicity in the food preferences of lambs: implications for mimicry in plants. Oikos 88:424–432. doi:10.1034/j.1600-0706.2000.880220.x

    Article  Google Scholar 

  • Pyare S, Longland WS (2001) Mechanisms of truffle detection by northern flying squirrels. Can J Zool 79:1007–1015. doi:10.1139/z01-069

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2009) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Sánchez F, Korine C, Steeghs M, Laarhoven L-J, Cristescu S, Harren FM, Dudley R, Pinshow B (2006) Ethanol and methanol as possible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). J Chem Ecol 32:1289–1300. doi:10.1007/s10886-006-9085-0

    Article  PubMed  Google Scholar 

  • Schmidt KA, Brown JS, Morgan RA (1998) Plant defenses as complementary resources: a test with squirrels. Oikos 81:130–142

    Article  Google Scholar 

  • Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermo tolerance of fosmidomycin-fed leaves. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Southwell IA, Maddox CDA, Zalucki MP (1995) Metabolism of 1,8-cineole in tea tree (Melaleuca alternifolia and M. linariifolia) by pyrgo beetle (Paropsisterna tigrina). J Chem Ecol 21:439–453. doi:10.1007/bf02036741

    Article  CAS  PubMed  Google Scholar 

  • Stowe MK, Turlings TC, Loughrin JH, Lewis WJ, Tumlinson JH (1995) The chemistry of eavesdropping, alarm, and deceit. Proc Natl Acad Sci 92:23–28

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant—carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113. doi:10.1016/s1360-1385(96)90004-7

    Article  Google Scholar 

  • Thomas J, Benson D (1985) Vegetation survey of Ku-ring-gai chase National Park. Report to NSW National Parks and Wildlife Service. Royal Botanic Gardens, Sydney

    Google Scholar 

  • Tronson D (2001) The odour, the animal and the plant. Molecules 6:104–116

    Article  CAS  Google Scholar 

  • Vander Wall SB (1998) Foraging success of granivorous rodents: effects of variation in seed and soil water on olfaction. Ecology 79:233–241. doi:10.1890/0012-9658(1998)079

    Article  Google Scholar 

  • Wiggins NL, McArthur C, McLean S, Boyle R (2003) Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brush tail possum. J Chem Ecol 29:1447–1464. doi:10.1023/A:1024221705354

    Article  CAS  PubMed  Google Scholar 

  • Yearsley JM, Villalba JJ, Gordon IJ, Kyriazakis I, Speakman JR, Tolkamp BJ, Illius AW, Duncan AJ (2006) A theory of associating food types with their postingestive consequences. Am Nat 167:705–716. doi:10.1086/502805

    Article  PubMed  Google Scholar 

  • Zidar J, Løvlie H (2012) Scent of the enemy: behavioural responses to predator faecal odour in the fowl. Anim Behav 84:547–554. doi:10.1016/j.anbehav.2012.06.006

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by an Australian Research Council grant to C. M. and P. B. B. (ARC-DP0877585), with the approval of the University of New South Wales Animal Care and Ethics Committee (ACEC) (nos. 08/75B and 11/89A), and permits from Nationals Parks and Wildlife Service (S12371 and SL100443). We thank Basil Panayotakos for help in the design and construction of feeders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Bedoya-Pérez.

Additional information

Communicated by Joanna Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedoya-Pérez, M.A., Isler, I., Banks, P.B. et al. Roles of the volatile terpene, 1,8-cineole, in plant–herbivore interactions: a foraging odor cue as well as a toxin?. Oecologia 174, 827–837 (2014). https://doi.org/10.1007/s00442-013-2801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2801-x

Keywords

Navigation