Skip to main content

Advertisement

Log in

The reaction of European lobster larvae (Homarus gammarus) to different quality food: effects of ontogenetic shifts and pre-feeding history

Oecologia Aims and scope Submit manuscript

Abstract

Young larval stages of many organisms represent bottlenecks in the life-history of many species. The high mortality commonly observed in, for example, decapod larvae has often been linked to poor nutrition, with most studies focussing on food quantity. Here, we focus instead on the effects of quality and have investigated its effects on the nutritional condition of lobster larvae. We established a tri-trophic food chain consisting of the cryptophyte Rhodomonas salina, the calanoid copepod Acartia tonsa and larvae of the European lobster Homarus gammarus. In a set of experiments, we manipulated the C:N:P stoichiometry of the primary producers, and accordingly those of the primary consumer. In a first experiment, R. salina was grown under N- and P-limitation and the nutrient content of the algae was manipulated by addition of the limiting nutrient to create a food quality gradient. In a second experiment, the effect on lobster larvae of long- and short-term exposure to food of varying quality during ontogenetic development was investigated. The condition of the lobster larvae was negatively affected even by subtle N- and P-nutrient limitations of the algae. Furthermore, younger lobster larvae were more vulnerable to nutrient limitation than older ones, suggesting an ontogenetic shift in the capacity of lobster larvae to cope with low quality food. The results presented here might have substantial consequences for the survival of lobster larvae in the field, as, in the light of future climate change and re-oligotrophication of the North Sea, lobster larvae might face marked changes in temperature and nutrient conditions, thus significantly altering their condition and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Acharya K, Kyle M, Elser JJ (2004) Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol Oceanogr 49:656–665

    Article  CAS  Google Scholar 

  • Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7:884–900

    Article  Google Scholar 

  • Anderson TR, Pond DW (2000) Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnol Oceanogr 45:1162–1167

    Article  CAS  Google Scholar 

  • Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202

    Article  Google Scholar 

  • Anger K (2001) The biology of decapod crustacean larvae. Balkema, Lisse

  • Anger K (2006) Contributions of larval biology to crustacean research: a review. Invertebr Reprod Dev 49:175–205

    Article  Google Scholar 

  • Boersma M (2000) The nutritional quality of P-limited algae for Daphnia. Limnol Oceanogr 45:1157–1161

    Article  CAS  Google Scholar 

  • Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488

    Article  Google Scholar 

  • Boersma M, Becker C, Malzahn AM, Vernooij S (2009) Food chain effects of nutrient limitation in primary producers. Mar Freshw Res 60:983–989

    Article  CAS  Google Scholar 

  • Branford JR (1978) Incubation period for the lobster Homarus gammarus at various temperatures. Mar Biol 47:363–368

    Article  Google Scholar 

  • Buckley LJ (1984) RNA:DNA ratio—an index of larval fish growth in the sea. Mar Biol 80:291–298

    Article  CAS  Google Scholar 

  • Buckley LJ, Caldarone E, Ong TL (1999) RNA–DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401:265–277

    Article  CAS  Google Scholar 

  • Carrillo P, Villar-Argaiz M, Medina-Sanchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: An in situ measurement. J Plankton Res 23:537–547

    Article  CAS  Google Scholar 

  • Charmantier G, Charmantier-Daures M (2001) Ontogeny of osmoregulation in crustaceans: the embryonic phase. Am Zool 41:1078–1089

    Article  Google Scholar 

  • Clemmesen C (1993) Improvements in the fluorometric determination of the RNA and DNA content of individual marine fish larvae. Mar Ecol Prog Ser 100:177–183

    Article  CAS  Google Scholar 

  • Darchambeau F, Færøvig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346

    Article  PubMed  Google Scholar 

  • DeMott WR (2003) Implications of element deficits for zooplankton growth. Hydrobiologia 491:177–184

    Article  Google Scholar 

  • DeMott WR, Müller-Navarra DC (1997) The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshw Biol 38:649–664

    Article  CAS  Google Scholar 

  • DeMott WR, Tessier AJ (2002) Stoichiometric constraints vs. algal defenses: testing mechanisms of zooplankton food limitation. Ecology 83:3426–3433

    Article  Google Scholar 

  • Dickman EM, Newell JM, Gonzalez MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412

    Article  CAS  PubMed  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ (2002) Biological stoichiometry from genes to ecosystems: ideas, plans, and realities. Integr Comp Biol 42:1226

    Google Scholar 

  • Elser JJ (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168:25–35

    Article  Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684

    Article  Google Scholar 

  • Elser JJ et al (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Elser JJ et al (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Elser JJ, Watts T, Bitler B, Markow TA (2006) Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 20:846–856

    Article  Google Scholar 

  • Færøvig PJ, Hessen DO (2003) Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshw Biol 48:1782–1792

    Article  Google Scholar 

  • Franke HD, Gutow L, Janke M (1999) The recent arrival of the oceanic isopod Idotea metallica Bosc off Helgoland (German Bight, North Sea): an indication of a warming trend in the North Sea? Helgol Meeresunters 52:347–357

    Article  Google Scholar 

  • Frost PC, Ebert D, Smith VH (2006) Ecological stoichiometry of host–parasite interactions: effects of elemental food quality on host responses to infectious disease. Integr Comp Biol 46:E45

    Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley-VCH, New York

    Book  Google Scholar 

  • Guillard RR, Ryther J (1962) Studies of marine planktonic diatoms. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768

    Article  Google Scholar 

  • Hall SR (2009) Stoichiometrically explicit food webs: feedbacks between resource supply, elemental constraints, and species diversity. Annu Rev Ecol Evol Syst 40:503–528

    Article  Google Scholar 

  • Harley CDG et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  • Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814

    Article  Google Scholar 

  • Hessen DO, Jensen TC, Kyle M, Elser JJ (2007) RNA response to N- and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct Ecol 21:956–962

    Article  Google Scholar 

  • Hood JM, Vanni MJ, Flecker AS (2005) Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146:247–257

    Article  PubMed  Google Scholar 

  • Hughes JT, Shleser RA, Tchobanoglous G (1974) A rearing tank for lobster larvae or other aquatic species. Prog Fish Cult 36:129–132

    Article  Google Scholar 

  • James-Pirri M-J, Cobb JS (1997) Growth rates of planktonic and newly settled American lobsters Homarus americanus. Mar Ecol Prog Ser 160:233–240

    Article  Google Scholar 

  • Juinio MAR, Cobb JS (1994) Estimation of recent growth of field-caught postlarval American lobsters, Homarus americanus, from RNA:DNA ratios. Can J Fish Aquat Sci 51:286–294

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  CAS  PubMed  Google Scholar 

  • Landry MR (1983) The development of marine calanoid copepods with comment on the Isochronal Rule. Limnol Oceanogr 28:614–624

    Article  Google Scholar 

  • Main TM, Dobberfuhl DR, Elser JJ (1997) N:P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478

    Article  CAS  Google Scholar 

  • Malzahn AM, Boersma M (2012) Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121:1408–1416

    Article  Google Scholar 

  • Malzahn AM, Clemmesen C, Rosenthal H (2003) Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish. Mar Ecol Prog Ser 259:285–293

    Article  CAS  Google Scholar 

  • Malzahn AM, Aberle N, Clemmesen C, Boersma M (2007a) Nutrient limitation of primary producers affects planktivorous fish condition. Limnol Oceanogr 52:2062–2071

    Article  CAS  Google Scholar 

  • Malzahn AM, Clemmesen C, Wiltshire KH, Laakmann S, Boersma M (2007b) Comparative nutritional condition of larval dab Limanda limanda and lesser sandeel Ammodytes marinus in a highly variable environment. Mar Ecol Prog Ser 334:205–212

    Article  CAS  Google Scholar 

  • Malzahn AM, Hantzsche FM, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48

    Article  PubMed  Google Scholar 

  • McGowan JA, Bograd SJ, Lynn RJ, Miller AJ (2003) The biological response to the 1977 regime shift in the California Current. Deep Sea Res Part II 50:2567–2582

    Article  Google Scholar 

  • Moe SJ, Stelzer RS, Forman MR, Harpole WS, Daufresne T, Yoshida T (2005) Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos 109:29–39

    Article  Google Scholar 

  • Müller-Navarra DC (1995a) Biochemical versus mineral limitation in Daphnia. Limnol Oceanogr 40:1209–1214

    Article  Google Scholar 

  • Müller-Navarra DC (1995b) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch Hydrobiol 132:297–307

    Google Scholar 

  • Newsholme SD, Crabtree B, Higgins SJ, Thornton SD, Start C (1972) The activities of fructose diphosphate in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem J 128:89–97

    CAS  PubMed  Google Scholar 

  • Parslow-Williams P, Atkinson RJA, Taylor AC (2001) Nucleic acids as indicators of nutritional condition in the Norway lobster Nephrops norvegicus. Mar Ecol Prog Ser 211:235–243

    Article  CAS  Google Scholar 

  • Peschutter JGR (2008) Ernährungszustand von Fischlarven in der Kieler Förde und im Nord-Ostsee-Kanal. Diploma thesis, University of Kiel, Kiel

  • Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82:1260–1269

    Article  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Oie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Rosa R, Nunes ML (2004) RNA, DNA and protein concentrations and amino acid profiles of deep-sea decapod Aristeus antennatus: an indication for seasonal variations of nutrition and growth. Aquat Living Resour 17:25–30

    Article  CAS  Google Scholar 

  • Rosa R, Nunes ML (2005) Seasonal patterns of nucleic acid concentrations and amino acid profiles of Parapenaeus longirostris (Crustacea, Decapoda): relation to growth and nutritional condition. Hydrobiologia 537:207–216

    Article  CAS  Google Scholar 

  • Rothhaupt KO (1995) Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol Oceanogr 40:1201–1208

    Article  CAS  Google Scholar 

  • Schmalenbach I, Buchholz F (2010) Vertical positioning and swimming performance of lobster larvae (Homarus gammarus) in an artificial water column at Helgoland, North Sea. Mar Biol Res 6:89–99

    Article  Google Scholar 

  • Schmalenbach I, Franke HD (2010) Potential impact of climate warming on the recruitment of an economically and ecologically important species, the European lobster (Homarus gammarus) at Helgoland, North Sea. Mar Biol 157:1127–1135

    Article  Google Scholar 

  • Schoo KL, Aberle N, Malzahn AM, Boersma M (2010) Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus? Aquat Ecol 44:233–242

    Article  CAS  Google Scholar 

  • Schoo KL, Aberle N, Malzahn AM, Boersma M (2012) Food quality affects secondary consumers even at low quantities: an experimental test with larval European lobster. PLoS ONE 7(3):e33550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smol JP et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  CAS  PubMed  Google Scholar 

  • Sterner RW (1993) Daphnia growth on varying quality of Scenedesmus—mineral limitation of zooplankton. Ecology 74:2351–2360

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29

    Article  Google Scholar 

  • Sterner RW, Schulz KL (1998) Zooplankton nutrition: recent progress and a reality check. Aquat Ecol 32:261–279

    Article  Google Scholar 

  • Templeman W (1936) The influence of temperature, salinity, light and food conditions on the survival and growth of the larvae of the lobster (Homarus americanus). J Biol Board Can 2:485–497

    Article  Google Scholar 

  • Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: is it real? Limnol Oceanogr 42:1436–1443

    Article  CAS  Google Scholar 

  • Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Glob Change Biol 9:818–825

    Article  Google Scholar 

  • van de Waal DB, Verschoor AM, Verspagen JMH, van Donk E, Huisman J (2010) Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–152

    Article  Google Scholar 

  • van der Zee C, Chou L (2005) Seasonal cycling of phosphorus in the Southern Bight of the North Sea. Biogeosciences 2:27–42

    Article  Google Scholar 

  • Villar-Argaiz M, Sterner RW (2002) Life history bottlenecks in Diaptomus clavipes induced by phosphorus-limited algae. Limnol Oceanogr 47:1229–1233

    Article  Google Scholar 

  • Villar-Argaiz M, Medina-Sanchez JM, Carrillo P (2002) Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83:1899–1914

    Article  Google Scholar 

  • Vrede T, Persson J, Aronsen G (2002) The influence of food quality (P:C ratio) on RNA:DNA ratio and somatic growth rate of Daphnia. Limnol Oceanogr 47:487–494

    Article  CAS  Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229

    Article  Google Scholar 

  • Wagner M, Durbin E, Buckley LJ (1998) RNA:DNA ratios as indicators of nutritional condition in the copepod Calanus finmarchicus. Mar Ecol Prog Ser 162:173–181

    Article  CAS  Google Scholar 

  • White TCR (1993) The inadequate environment. Springer, Berlin

    Book  Google Scholar 

  • Wiltshire KH et al (2008) Resilience of North Sea phytoplankton spring blooms dynamics: an analysis of long term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Article  Google Scholar 

  • Wiltshire KH et al (2010) Helgoland Roads, North Sea: 45 years of change. Estuaries Coast 33:295–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.L.S. was funded by the German Science Foundation (DFG AB 289/2-1). This study is part of the AWI Food Web project. We thank Anneke Purz for practical support, Bettina Oppermann and Julia Haafke for help with the analyses and our Food Web colleagues for stimulating discussions throughout. We are grateful to Jan Beermann for providing the drawings of the lobster larvae. We thank Uli Sommer and two anonymous reviewers for their comments, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherina L. Schoo.

Additional information

Communicated by Ulrich Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 173 kb)

Supplementary material 2 (DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoo, K.L., Aberle, N., Malzahn, A.M. et al. The reaction of European lobster larvae (Homarus gammarus) to different quality food: effects of ontogenetic shifts and pre-feeding history. Oecologia 174, 581–594 (2014). https://doi.org/10.1007/s00442-013-2786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2786-5

Keywords

Navigation