Skip to main content

Advertisement

Log in

Does background nitrogen deposition affect the response of boreal vegetation to fertilization?

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Forest floor vegetation is an important component of forest biodiversity, and numerous studies have shown that N input alters the vegetation. In some cases, however, the effects of experimental N addition have been small or absent. Two alternative hypotheses have been suggested: (a) competition from the tree layer confounds the response to N, or (b) N response in areas with high background deposition is limited by N saturation. Neither of these hypotheses has so far been explicitly tested. Here, we compile data on forest floor vegetation from N addition experiments, in which the forest had been clear-cut, along an N deposition gradient ranging from 4 to 16 kg ha−1 year−1 in Sweden. We analyzed the effects of N addition and its interaction with N deposition on common species and thereby tested the second hypothesis in an environment without the confounding effects of the tree layer. The results show that the effects of the experimental N addition are significantly influenced by background N deposition: the N addition effects are smaller in areas with high N deposition than in areas with low N deposition, despite the fact that the highest N deposition in this study can be considered moderate from an international perspective. The results are important when assessing the reliability of results from N addition experiments on forest floor vegetation in areas with moderate to high background N deposition. We conclude that the interacting effects of N addition and N deposition need to be included when assessing long-term N sensitivity of plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioSci 39:378–386

    Article  Google Scholar 

  • Akselsson C, Belyazid S, Hellsten S, Klarqvist M, Pihl-Karlsson G, Karlsson P-E, Lundin L (2010) Assessing the risk of N leaching from forest soils across a steep N deposition gradient in Sweden. Environ Pollut 158:3588–3595

    Article  PubMed  CAS  Google Scholar 

  • Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manage 119:51–62

    Article  Google Scholar 

  • Bergh J, Nilsson U, Grip H, Hedwall P-O, Lundmark T (2008) Effects of frequency of fertilisation on production, foliar chemistry and nutrient leaching in young Norway spruce stands in Sweden. Silv Fenn 42:721–733

    Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  PubMed  CAS  Google Scholar 

  • Bobbink R, Braun S, Nordin A, Power S, Schutz K, Strengbom J, Weijters M, Tomassen H (2011) Review and revision of empirical critical loads and dose-response relationships. Coordination Centre for Effects (CCE), Bilthoven, The Netherlands

    Google Scholar 

  • De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K, Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–816

    Article  Google Scholar 

  • Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wildi O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycl 20:GB4003

    Article  Google Scholar 

  • Dralle K, Larsen JB (1995) Growth response to different NPK-fertilizer in Norway spruce plantations in Western Denmark. Plant Soil 168–169:501–504

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa (in German with English summary). Scr Geobot 18:1–258

    Google Scholar 

  • Emmett BA (2007) Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water Air Soil Pollut Focus 7:99–109

    Article  CAS  Google Scholar 

  • Eriksson H, Karlsson K (1997) Effects of different thinning and fertilization regimes on the development of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands in long-term silvicultural trials in Sweden (in Swedish with English summary). Report 42. Swedish University of Agricultural Sciences, Department of Forest Yield Research

  • Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191

    Article  CAS  Google Scholar 

  • Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–858

    Article  Google Scholar 

  • Gilliam FS, Hockenberry AW, Adams MB (2006) Effects of atmospheric nitrogen deposition on the herbaceous layer of a central Appalachian hardwood forest. J Torr Bot Soc 133:240–254

    Article  Google Scholar 

  • Gross KL, Willig MR, Gough L, Inouye R, Cox SB (2000) Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos 89:417–427

    Article  Google Scholar 

  • Hannerz M, Hånell B (1997) Effects on the flora in Norway spruce forests following clearcutting and shelterwood cutting. For Ecol Manage 90:29–49

    Article  Google Scholar 

  • Hedwall P-O, Nordin A, Brunet J, Bergh J (2010) Compositional changes of forest-floor vegetation in young stands of Norway spruce as an effect of repeated fertilisation. For Ecol Manage 259:2418–2425

    Article  Google Scholar 

  • Hedwall P-O, Brunet J, Nordin A, Bergh J (2013) Changes in the abundance of keystone forest-floor species in response to changes of forest structure. J Veg Sci 24:296–306

    Article  Google Scholar 

  • Högberg P, Fan H, Quist M, Binkley D, Tamm CO (2006) Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob Chang Biol 12:489–499

    Article  Google Scholar 

  • Hurd TM, Brach AR, Raynal DJ (1998) Response of understory vegetation of Adirondack forests to nitrogen additions. Can J For Res 28:799–807

    Article  Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Article  Google Scholar 

  • Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101–106

    Article  Google Scholar 

  • Korhonen JFJ, Pihlatie M, Pumpanen J, Aaltonen H, Hari P, Levula J, Kieloaho A-J, Nikinmaa E, Vesala T, Ilvesniemi H (2012) Nitrogen balance of a boreal Scots pine forest. Biogeosci Discuss 9:11202–11237

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter AW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428

    Article  Google Scholar 

  • Nordin A, Strengbom J, Ericson L (2006) Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environ Pollut 141:167–174

    Article  PubMed  CAS  Google Scholar 

  • Oberle B, Grace JB, Chase JM (2009) Beneath the veil: plant growth form influences the strength of species richness-productivity relationships in forests. Glob Ecol Biogeogr 18:416–425

    Article  Google Scholar 

  • Odell G, Ståhl G (1998) Vegetationsförändringar i svensk skogsmark mellan 1980- och 90-talet—En studie grundad på Ståndortskarteringen (in Swedish). Rapport 37. Sveriges lantbruksuniversitet, institutionen för skoglig resurshushållning och geomatik

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHM, Wagner H (2011) Vegan: community ecology package. R package version 1.17-8. http://CRAN.R-project.org/package=vegan

  • Olsson BA, Kellner O (2006) Long-term effects of nitrogen fertilization on ground vegetation in coniferous forests. For Ecol Manage 238:458–470

    Article  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Chang Biol 11:1745–1753

    Article  Google Scholar 

  • Palviainen M, Finér L, Mannerkovski H, Piirainen S, Starr M (2005) Responses of ground vegetation species to clear-cutting in a boreal forest: aboveground biomass and nutrient contents during the first 7 years. Ecol Res 20:652–660

    Article  Google Scholar 

  • Pärtel M, Laanisto L, Zobel M (2007) Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology 88:1091–1097

    Article  PubMed  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–1215

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Röttgermann M, Steinlein T, Beyschlag W, Dietz H (2000) Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation. J Veg Sci 11:145–148

    Article  Google Scholar 

  • SMHI (2010) Temperatursummor och humiditet för växtsäsongen 1980–2009

  • SMHI (2011) Nationell kartläggning av atmosfärskemiska data för Sveriges miljöövervakning, version Atmosfärskemi 2011.1, framtaget av SMHI på uppdrag av Naturvårdsverket. http://www.smhi.se/klimatdata/miljo/atmosfarskemi

  • Strengbom J, Nordin A (2008) Commercial forest fertilisation causes long-term residual effects in ground vegetation of boreal forests. For Ecol Manage 256:2175–2781

    Article  Google Scholar 

  • Strengbom J, Nordin A (2012) Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. J Veg Sci 23:361–371

    Article  Google Scholar 

  • Strengbom J, Walheim M, Näsholm T, Ericson L (2003) Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests. Ambio 32:91–97

    PubMed  Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Questions of productivity, vegetational change and ecosystem stability. Ecol Stud 81:1–116

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Verheyen K, Baeten L, De Frenne P, Bernhardt-Römermann M, Brunet J, Cornelis J, Decocq G, Dierschke H, Eriksson O, Hédl R, Heinken T, Hermy M, Hommel P, Kirby K, Naaf T, Peterken G, Petřík P, Pfadenhauer J, Van Calster H, Walther G-R, Wulf M, Verstraeten G (2011) Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J Ecol 100:352–365

    Article  Google Scholar 

Download references

Acknowledgments

We thank Goddert von Oheimb and two anonymous reviewers for valuable comments on an earlier version of this manuscript. This research was funded through Future Forests, a multidisciplinary research program supported by the Foundation for Strategic Environmental Research (MISTRA), the Swedish Forestry Industry, the Swedish University of Agricultural Sciences (SLU), Umeå University and the Forestry Research Institute of Sweden, and by grants from Stiftelsen Oscar och Lili Lamms Minne, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), Carl Tryggers Stiftelse för Vetenskaplig Forskning, and Erik Rönnbergs Fond. The experiments comply with the current laws of the country (Sweden) in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Hedwall.

Additional information

Communicated by Laura Gough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedwall, P.O., Nordin, A., Strengbom, J. et al. Does background nitrogen deposition affect the response of boreal vegetation to fertilization?. Oecologia 173, 615–624 (2013). https://doi.org/10.1007/s00442-013-2638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2638-3

Keywords

Navigation