Skip to main content

Advertisement

Log in

Coral recovery may not herald the return of fishes on damaged coral reefs

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237. doi:10.3354/meps206227

    Article  Google Scholar 

  • Ackerman JL, Bellwood DR (2002) Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. J Fish Biol 60:893–901. doi:10.1111/j.1095-8649.2002.tb02416.x

    Article  Google Scholar 

  • Ackerman JL, Bellwood DR, Brown JH (2004) The contribution of small individuals to density-body size relationships: examination of energetic equivalence in reef fishes. Oecologia 139:568–571. doi:10.1007/s00442-004-1536-0

    Article  PubMed  Google Scholar 

  • Anthony KRN, Kerswell AP (2007) Coral mortality following extreme low tides and high solar radiation. Mar Biol 151:1623–1631

    Article  Google Scholar 

  • Atema J, Kingsford MJ, Gerlach G (2002) Larval reef fish could use odour for detection, retention and orientation to reefs. Mar Ecol Prog Ser 241:151–160. doi:10.3354/meps241151

    Article  Google Scholar 

  • Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141. doi:10.3354/meps237133

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833. doi:10.1038/nature02691

    Article  PubMed  CAS  Google Scholar 

  • Bellwood DR, Hoey AS, Ackerman JL, Depczynski M (2006) Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob Change Biol 12:1587–1594. doi:10.1111/j.1365-2486.2006.01204.x

    Article  Google Scholar 

  • Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83. doi:10.1007/s00338-003-0353-y

    Article  Google Scholar 

  • Berumen ML, Pratchett MS (2006) Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25:647–653. doi:10.1007/s00338-006-0145-2

    Article  Google Scholar 

  • Cheal AJ, Wilson SK, Emslie MJ, Dolman AM, Sweatman H (2008) Responses of reef fish communities to coral declines on the Great Barrier Reef. Mar Ecol Prog Ser 372:211–223. doi:10.3354/meps07708

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1994) Similarity-based testing for community pattern—the 2-way layout with no replication. Mar Biol 118:167–176. doi:10.1007/BF00699231

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser 256:183–191. doi:10.3354/meps256183

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2004) Microhabitat utilization patterns in cryptobenthic reef fish communities. Mar Biol 145:455–463. doi:10.1007/s002270004-1342-6

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2005) Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol 15:288–289. doi:10.1016/j.cub.2005.04.016

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87:3119–3127. doi:10.1890/0012-9658(2006)87[3119:EPAIIV]20CO2

    Article  PubMed  Google Scholar 

  • Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120. doi:10.1007/s00442-007-0714-2

    Article  PubMed  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4:e5239 1–9 doi:10.1371/journal.pone.0005239

  • Dixson DL, Jones GP, Munday PL, Planes S, Pratchett MS, Srinivasan M, Syms C, Thorrold SR (2008) Coral reef fish smell leaves to find island homes. Proc R Soc Lond B 275:2831–2839. doi:10.1098/rspb.2008.0876

    Article  Google Scholar 

  • Farnsworth CA, Bellwood DR, van Herwereden L (2010) Genetic structure across the GBR: evidence from short-lived gobies. Mar Biol 157:945–953. doi:10.1007/s00227-009-1375-y

    Article  Google Scholar 

  • Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339(49):59. doi:10.3354/meps339049

    Google Scholar 

  • Herler J (2007) Microhabitats and ecomorphology of coral- and coral rock-associated gobiid fish (Teleostei: Gobiidae) in the northern Red Sea. Mar Ecol 28:82–94. doi:10.3354/meps342265

    Article  Google Scholar 

  • Herler J, Munday PL, Hernaman V (2011) Gobies on coral reefs.In: Patzner RA, Van Tassel JL, Kovačić, Kapoor BG (eds) The biology of gobies. Science Publishers, St.Helier, pp 493–529

  • Hernaman V, Munday PL (2005) Life history characteristics of coral reef gobies: I. Growth and life-span. Mar Ecol Prog Ser 290:207–211. doi:10.3354/meps290207

    Article  Google Scholar 

  • Hoey AS, Pratchett MS, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS ONE 6:e25824. doi:10.1371/journal.pone.0025824

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science 265:1547–1551. doi:10.1126/science.265.5178.1547

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi:10.1126/science.1085046

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386. doi:10.1016/j.tree.2005.03.022

    Article  PubMed  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642. doi:10.1016/j.tree.2010.07.011

    Google Scholar 

  • Johansson CL, Bellwood DR, Depczynski M (2010) Sea urchins, macroalgae and coral reef decline: a functional evaluation of an intact reef system, Ningaloo, Western Australia. Mar Ecol Prog Ser 414:65–74. doi:10.3354/meps08730

    Article  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163. doi:10.1007/s003380000086

    Article  Google Scholar 

  • McCook LJ, Ayling T, Cappo M, Choat JH, Evans RD, De Freitas DM, Heupel M, Hughes TP, Jones GP, Mapstone B, Marsh H, Mills M, Molloy FJ, Pitcher CR, Pressey RL, Russ GR, Sutton S, Sweatman H, Tobin R, Wahcnefeld DR, Williamson DH (2010) Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc Natl Acad Sci USA 107:18278–18285. doi:10.1073/pnas.0909335107

    Google Scholar 

  • Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Change Biol 10:1642–1647. doi:10.1111/j.1365-2486.2004.00839.x

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958. doi:10.1126/science.1085706

    Article  PubMed  CAS  Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes—ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Article  Google Scholar 

  • Stimpson J (1985) The effect of shading by the table coral Acropora hyacinthus on understory corals. Ecology 66:40–53

    Article  Google Scholar 

  • Talbot FH, Russell BC, Anderson GRV (1978) Coral-reef fish communities—unstable, high-diversity systems. Ecol Monogr 48:425–440. doi:10.2307/2937241

    Article  Google Scholar 

  • Vroom PS (2011) “Coral dominance”: a dangerous ecosystem misnomer? J Mar Biol 2011:164127. doi:10.1155/2011/164127

  • Vroom PS, Page KN, Kenyon JC, Brainard RE (2006) Algae-dominated reefs. Am Sci 94:430–437. doi:10.1511/2006.61.430

    Google Scholar 

  • Walker B (1995) Conserving biological diversity through ecosystem resilience. Conserv Biol 9:747–752. doi:10.1046/j.1523-1739.1995.09040747.x

    Article  Google Scholar 

  • Wilkinson C (2008) Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol 12:2220–2234. doi:10.1111/j.1365-2486.2006.01252.x

    Article  Google Scholar 

  • Wilson SK, Dolman AM, Cheal AJ, Emslie MJ, Pratchett MS, Sweatman HPA (2009) Maintenance of fish diversity on disturbed coral reefs. Coral Reefs 28:3–14. doi:10.1007/s00338-008-0431-2

    Article  Google Scholar 

  • Winterbottom R, Southcott L (2008) Short lifespan and high mortality in the western Pacific coral reef goby Trimma nasa. Mar Ecol Prog Ser 366:203–208. doi:10.3354/meps07517

    Article  Google Scholar 

  • Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54. doi:10.3354/meps07790

    Article  Google Scholar 

Download references

Acknowledgments

We thank: J. Ackerman, H. Larson, P. Munday, P. Osmond, and R. Winterbottom for their help with collections and/or fish identifications; P. Marshall for access to coral data; 800+ JCU MB3160 students for enthusiastic goby picking and sorting; the staff of Orpheus Island Research Station for field support; the Great Barrier Reef Marine Park Authority, National Parks, Environmental Protection Agency, and Department of Primary Industries for permission to collect; and two anonymous reviewers and colleagues in the ARC Centre of Excellence for Coral Reef Studies for helpful comments or discussions. This work was supported by the Australian Research Council (DRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Bellwood.

Additional information

Communicated by Jeff Shima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellwood, D.R., Baird, A.H., Depczynski, M. et al. Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170, 567–573 (2012). https://doi.org/10.1007/s00442-012-2306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2306-z

Keywords

Navigation