Skip to main content

Advertisement

Log in

Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Báldi A (2008) Habitat heterogeneity overrides the species-area relationship. J Biogeogr 35:675–681. doi:10.1111/j.1365-2699.2007.01825.x

    Article  Google Scholar 

  • Bendell BE, McNicol DK (1987) Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiology 150:193–202

    Article  Google Scholar 

  • Buchwald R (1992) Vegetation and dragonfly fauna-characteristics and examples of biocenological field studies. Vegetatio 101:99–107

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carchini G, Della Bella V, Solimini AG, Bazzanti M (2007) Relationships between the presence of odonate species and environmental characteristics in lowland ponds of central Italy. Ann Limnol 43:81–87

    Article  Google Scholar 

  • Corbet PS (2004) Dragonflies: behaviour and ecology of Odonata, revised edn. Harley, Colchester

    Google Scholar 

  • Dijkstra KB (2006) Field guide to the dragonflies of Britain and Europe. British Wildlife, Dorset

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.0113.x

    Article  PubMed  Google Scholar 

  • Eriksson M, Henrikson L, Nilsson B, Nyman G, Oscarson H, Stenson A, Larsson K (1980) Predator-prey relations important for the biotic changes in acidified lakes. Ambio 9:248–249

    Google Scholar 

  • Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev Camb Philos Soc 80:1–25. doi:10.1017/S1464793104006517

    Article  PubMed  Google Scholar 

  • Evans KL, Jackson SF, Greenwood JJD, Gaston KJ (2006) Species traits and the form of individual species-energy relationships. Proc R Soc Lond B 273:1779–1787. doi:10.1098/rspb.2006.3487

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Gaston KJ (2008) Biodiversity and extinction: the importance of being common. Prog Phys Geogr 32:73–79. doi:10.1177/030913308089499

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Heino J (2002) Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodivers Conserv 11:137–147

    Article  Google Scholar 

  • Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551

    Article  PubMed  CAS  Google Scholar 

  • Johansson F, Brodin T (2003) Effects of fish predators and abiotic factors on dragonfly community structure. J Freshwat Ecol 18:415–423

    Article  Google Scholar 

  • Johansson F, Englund G, Brodin T, Gardfjell H (2006) Species abundance models and patterns in dragonfly communities: effects of fish predators. Oikos 114:27–36. doi:10.1111/j.2006.0030-1299.14495.x

    Article  Google Scholar 

  • Keil P, Simova I, Hawkins BA (2008) Water-energy and the geographical species richness pattern of European and North African dragonflies (Odonata). Insect Conserv Divers 1:142–150. doi:10.1111/j.1752-4598.2008.00019.x

    Article  Google Scholar 

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agric Biol Environ Stat 9:300–318. doi:10.1198/108571104X3361

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman G, Droege S, Royle J, Langtimm C (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modelling. Elsevier, Amsterdam

    Google Scholar 

  • Marquet PA, Fernández M, Navarrete SA, Valdovinos C (2004) Diversity emerging: toward a deconstruction of biodiversity patterns. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, pp 191–209

    Google Scholar 

  • McPeek M (1990) Determination of species composition in the enallagma damselfly assemblages of permanent lakes. Ecology 71:83–98

    Article  Google Scholar 

  • Niemelä J (1999) Management in relation to disturbance in the boreal forest. For Ecol Manage 115:127–134

    Article  Google Scholar 

  • Norling U, Sahlén G (1997) Odonata, dragonflies and damselflies. In: Nilsson A (ed) The aquatic insects of North Europe: a taxonomic handbook, vol 2. Apollo, Stenstrup

    Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70. doi:10.1016/S0006-3207(01)00154-9

    Article  Google Scholar 

  • Öhman J, Buffam I, Englund G, Blom A, Lindgren E, Laudon H (2006) Associations between water chemistry and fish community composition: a comparison between isolated and connected lakes in northern Sweden. Freshwat Biol 51:510–522. doi:10.1111/j.1365-2427.2006.01514.x

    Article  Google Scholar 

  • Pautasso M (2007) Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol Lett 10:16–24. doi:10.1111/j.1461-0248.2006.00993.x

    Article  PubMed  Google Scholar 

  • Rith-Najarian JC (1998) The influence of forest vegetation variables on the distribution and diversity of dragonflies in a northern Minnesota forest landscape: a preliminary study (Anisoptera). Odonatologica 27:335–351

    Google Scholar 

  • Rosenzweig ML (2004) Applying species-area relationships to the conservation of diversity. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, pp 325–343

    Google Scholar 

  • Ruggiero A, Cereghino R, Figuerola J, Marty P, Angelibert S (2008) Farm ponds make a contribution to the biodiversity of aquatic insects in a french agricultural landscape. C R Biol 331:298–308. doi:10.1016/j.crvi.2008.01.009

    Article  PubMed  Google Scholar 

  • Sahlén G (1999) The impact of forestry on dragonfly diversity in Central Sweden. Int J Odonatol 2:177–186

    Google Scholar 

  • Sahlén G (2006) Specialists vs. generalists among dragonflies: the importance of forest environments in the formation of diverse species pools. In: Cordero Rivera A (ed) Forests and dragonflies. Pensoft, Sofia, pp 153–180

    Google Scholar 

  • Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Conserv 78:279–288

    Article  Google Scholar 

  • Šizling AL, Šizlingová E, Storch D, Reif J, Gaston KJ (2009) Rarity, commonness, and the contribution of individual species to species richness patterns. Am Nat 174:82–93. doi:10.1086/599305

    Article  PubMed  Google Scholar 

  • Terribile LC, Diniz-Filho JAF, Rodriguez MA, Rangel TFLVB (2009) Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecol Biogeogr 18:123–136. doi:10.1111/j.1466-8238.2008.00440.x

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to J.S. Kotiaho and two anonymous reviewers for their valuable comments on the manuscript. We are also grateful to following persons for their help during the study: N. Björkqvist, H. Hämäläinen, R. Jones, J. Koskimäki, P. Kuokkanen, A. Lensu, K. Meissner, M. Mussaari, M. Siltala, M. Sorjanen, E. Suutari and the members of Monday Coffee Club, particularly P. Halme, K. Kuitunen, A. Laita, J-T Seppänen, J. Timonen and T. Toivanen, as well as the members of WDA ‘07 meeting, especially G. Sahlén. Finally, we thank Metsähallitus for providing the SutiGis database. The study was financially supported by the Academy of Finland (project #7115560), Societas pro Fauna et Flora Fennica (for A.-M. S.) and Societas Biologica Fennica Vanamo (for A.-M. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merja Honkanen.

Additional information

Communicated by Craig Osenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honkanen, M., Sorjanen, AM. & Mönkkönen, M. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry. Oecologia 166, 457–467 (2011). https://doi.org/10.1007/s00442-010-1846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1846-3

Keywords

Navigation