Skip to main content
Log in

Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

High mountain ecosystems are extreme habitats for all organisms and therefore demand specific adaptations. In this context, we studied the ecology of the butterfly Euphydryas aurinia debilis in the High Tauern (Austria) and compared the obtained data against the ecology of the species in lower elevation habitats. We performed mark-release-recapture studies over the entire flight periods (end of June to end of July) in 2007 and 2008 to analyse the fundamental ecological parameters of a population. The demography of males and females was similar in both years, and no indication of typical protandry was detected. We observed a generally low dispersal of the individuals in both years, but males dispersed significantly more than females in 2008; this finding of low vagility was supported by allozyme analyses. Furthermore, butterflies survived periods of several days of continuously closed snow cover without any indication of increased mortality rates. In these three traits, this alpine population of E. aurinia apparently has ecological and physiological adaptations to the extreme requirements of high-altitude habitats and strongly deviates from the lower elevation populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altshuler D, Dudley R (2006) Adaptations to life at high elevation: an introduction to the symposium. Integr Comp Biol 46:3–4

    Article  Google Scholar 

  • Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185

    Article  Google Scholar 

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160

    Article  Google Scholar 

  • Baguette M, Schtickzelle N (2006) Negative relationship between dispersal distance and demography in butterfly metapopulations. Ecology 87:648–654

    Article  PubMed  Google Scholar 

  • Bale JS (1987) Insect cold hardiness: freezing and supercooling—an ecophysiological perspective. J Insect Physiol 33:899–908

    Article  Google Scholar 

  • Baust JG, Rojas RR (1985) Review—insect cold hardiness: facts and fancy. J Insect Physiol 31:755–759

    Article  Google Scholar 

  • Berner D, Körner C, Blanckenhorn W (2004) Grasshopper populations across 2000 m of altitude: is there life history adaptation? Ecography 27:733–740

    Article  Google Scholar 

  • Besold J, Schmitt T, Tammaru T, Cassel-Lundhagen A (2008) Strong genetic impoverishment from the centre of distribution in southern Europe to peripheral Baltic and isolated Scandinavian populations of the pearly heath butterfly. J Biogeogr 35:2090–2101

    Article  Google Scholar 

  • Betzholtz PE, Ehrig A, Lindeborg M, Dinnétz P (2007) Food plant density, patch isolation and vegetation height determine occurrence in a Swedish metapopulation of the marsh fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae). J Insect Conserv 11:343–350

    Article  Google Scholar 

  • Blanckenhorn W (1997) Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia 1009:342–352

    Article  Google Scholar 

  • Chappel M (1983) Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia 56:126-131

    Google Scholar 

  • Cooch E, White G (2007) Program MARK. A gentle introduction, 6th edn. Internet-Document. http://www.phidot.org/software/mark/docs/book/

  • Cullenward MJ, Ehrlich PR, White RR, Holdren CE (1979) The ecology and population genetics of an alpine checkerspot butterfly, Euphydryas anicia. Oecologia 38:1–12

    Article  Google Scholar 

  • Dillon ME, Frazier MR, Dudley R (2005) Into thin air: physiology and evolution of alpine insects. Integr Comp Biol 46:49–61

    Article  Google Scholar 

  • Dingle H, Mousseau T (1994) Geographic variation in embryonic development time and stage of diapause in a grasshopper. Oecologia 97:179–185

    Article  Google Scholar 

  • Dingle H, Mousseau T, Scott S (1990) Altitudinal variation in life cycle syndromes of California populations of the grasshopper Melanoplus sanguinipes (F.). Oecologia 84:199–206

    Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin Ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package) Ver. 3.5.c. Department of Genetics, University of Washington, Seattle

  • Fowles AP, Smith RG (2006) Mapping the habitat quality of patch networks for the marsh fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae) in Wales. J Insect Conserv 10:161–177

    Article  Google Scholar 

  • Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8:377–386

    Article  Google Scholar 

  • Habel J, Schmitt T, Müller P (2005) The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: the phylogeography of the marbled white butterfly (Satyrinae, Lepidoptera). J Biogeogr 32:1489–1497

    Article  Google Scholar 

  • Habel J, Meyer M, Mousadik A, Schmitt T (2008) Africa goes Europe: the complete phylogeography of the Marbled White butterfly species complex Melanargia galathea/M. lachesis (Lepidoptera: Satyridae). Org Divers Evol 8:121–129

    Article  Google Scholar 

  • Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. North-Holland Publishers, Amsterdam

  • Hebert PDN, Beaton MJ (1993) Methodologies for allozyme analysis using cellulose acetate electrophoresis. Helena Laboratories, Beaumont, TX

  • Hovestadt T, Nieminen M (2009) Costs and benefits of dispersal in butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 97–106

    Google Scholar 

  • Hula V, Konvicka M, Pavlicko A, Zdenek F (2004) Marsh Fritillary (Euphydryas aurinia) in the Czech Republic: monitoring, metapopulation structure, and conservation of an endangered butterfly. Entomol Fenn 15:231–241

    Google Scholar 

  • Joyce DA, Pullin AS (2003) Conservation implications of the distribution of the genetic diversity at different scales: a case study using the marsh fritillary butterfly (Euphydryas aurinia). Biol Conserv 114:453–461

    Article  Google Scholar 

  • Junker M, Schmitt T (2010) Demography, dispersal and movement pattern of Euphydryas aurinia (Lepidoptera: Nymphalidae) at the Iberian Peninsula: an alarming example in an increasingly fragmented landscape? J Insect Conserv 14:237–246

    Article  Google Scholar 

  • Kadlec T, Vrba P, Kepka P, Schmitt T, Konvicka M (2010) Tracking the decline of once-common butterfly: delayed oviposition, demography and population genetics in the Hermit, Chazara briseis. Anim Conserv 13:172–183

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionodae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Konvicka M, Hula V, Fric Z (2003) Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): what can be learned from vegetation composition and architecture? Eur J Entomol 100:313–322

    Google Scholar 

  • Konvicka M, Novak J, Benes J, Fric Z, Bradley J, Keil P, Hrcek J, Chobot K, Marhoul P (2008) The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. J Insect Conserv 12:549–560

    Article  Google Scholar 

  • Kudrna O (1986) Butterflies of Europe, vol 8. Aspects of the conservation of butterflies in Europe. Aula, Wiesbaden

    Google Scholar 

  • Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Pop Ecol 45:115–123

    Article  Google Scholar 

  • Mani MS (1968) Ecology and biogeography of high altitude insects. Ser Entomol 4:530

    Google Scholar 

  • Miaud C, Merilä J (2000) Local adaptation or environmental induction? Causes of population differentiation in alpine amphibians. Biota 2:31–50

    Google Scholar 

  • Müller M (1987) Handbuch ausgewählter Klimastationen der Erde. Universität Trier, Paulinus-Druckerei, Trier

    Google Scholar 

  • Munguira ML, Martin J, García-Barros E, Viejo JL (1997) Use of space and resources in a Mediterranean population of the butterfly Euphydryas aurinia. Acta Oecol 18:597–612

    Article  Google Scholar 

  • Nei M (1972) Genetic distances between populations. Am Nat 106:283–291

    Article  Google Scholar 

  • Nève G (2009) Population genetics of butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 107–129

    Google Scholar 

  • Nève G, Singer MC (2008) Protandry and postandry in two related butterflies: conflicting evidence about sex-specific trade-offs between adult size and emergence time. Evol Ecol 22:701–709

    Google Scholar 

  • Nowicki P, Bonelli S, Barbero F, Balletto E (2009) Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. Oecologia 161:227–239

    Article  PubMed  Google Scholar 

  • Peñuelas J, Sardans J, Stefanescu C, Parella T, Filella I (2006) Lonicera implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J Chem Ecol 32:1925–1933

    Article  PubMed  Google Scholar 

  • Richardson BJ, Baverstock PR, Adams M (1986) Allozyme electrophoresis. A handbook for animal systematics and population studies. Academic Press, San Diego

  • Roff D (1980) Optimizing development time in a seasonal environment: the “ups and downs” of clinal variation. Oecologia 45:202–208

    Article  Google Scholar 

  • Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653

    Google Scholar 

  • Schmitt T, Besold J (2010) Upslope movements and large scale expansions: the taxonomy and biogeography of the Coenonympha arcaniadarwinianagardetta butterfly species complex. Zool J Linn Soc Lond (in press)

  • Schmitt T, Haubrich K (2008) The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Mol Ecol 17:2194–2207

    Article  PubMed  Google Scholar 

  • Schmitt T, Röber S, Seitz A (2005) Is the last glaciation the only relevant event for the present genetic population structure of the meadow brown butterfly Maniola jurtina (Lepidoptera: Nymphalidae)? Biol J Linn Soc 85:419–431

    Article  Google Scholar 

  • Schmitt T, Hewitt GM, Müller P (2006) Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J Evol Biol 19:108–113

    Article  CAS  PubMed  Google Scholar 

  • Schtickzelle N, Baguette M, Le Boulengé É (2003) Modelling insect demography from capture–recapture data: comparison between the constrained linear models and the Jolly–Seber analytical method. Can Entomol 135:313–323

    Article  Google Scholar 

  • Schtickzelle N, Choutt J, Goffart P, Fichefet V, Baguette M (2005) Metapopulation dynamics and conservation of the marsh fritillary butterfly: population viability analysis and management options for a critically endangered species in Western Europe. Biol Conserv 126:569–581

    Article  Google Scholar 

  • Schweizer Bund für Naturschutz (1987) Tagfalter und ihre Lebensräume. Basel

  • Siegismund HR (1993) G-Stat, ver. 3. Genetical statistical programs for the analysis of population data. The Arboretum, Royal Veterinary and Agricultural University, Horsholm, Denmark

  • Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003a) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262

    Article  Google Scholar 

  • Sinclair BJ, Addo-Bediako A, Chown SL (2003b) Climatic variability and the evolution of insect freeze tolerance. Biol Rev 78:181–195

    Article  PubMed  Google Scholar 

  • Singer MC, Wee B (2005) Spatial pattern in checkerspot butterfly-host plant association at local, metapopulation and regional scales. Ann Zool Fenn 42:347–361

    Google Scholar 

  • Somme L (2008) Adaptations of terrestrial arthropods to the alpine environment. Biol Rev 4:367–407

    Google Scholar 

  • Stefanescu C, Peñuelas J, Sardan J, Filella I (2006) Females of the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae: Melitaeini) select the greenest leaves of Lonicera implexa (Caprifoliaceae) for oviposition. Eur J Entomol 103:569–574

    Google Scholar 

  • Wang R, Wang Y, Chen J, Lei G, Xu R (2004) Contrasting movement patterns in two species of chequerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecol Entomol 29:367–374

    Article  Google Scholar 

  • Warren MS, Munguira ML, Ferrin J (1994) Notes on the distribution, habitats and conservation of Euphydryas aurinia Rottemburg Lepidoptera: Nymphalidae in Spain. Entomol Gaz 45:5–12

    Google Scholar 

  • Zimmermann K, Fric Z, Filipová L, Konvicka M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): how to be a successful wetland butterfly. Eur J Entomol 102:699–706

    Google Scholar 

Download references

Acknowledgments

We acknowledge the DFG for financing the scholarship of Marius Junker in the graduate school (Verbesserung von Normsetzung und Normanwendung im integrierten Umweltschutz durch rechts- und naturwissenschaftliche Kooperation; no. 1319) at the University of Trier, and the Hohe Tauern National Park for the permission to perform our studies within the national park. Furthermore, we thank Großglockner Hochalpenstraße for financial support of the genetic analyses and for the permission to freely use the alpine road, and the Haus der Natur, Museum für Natur und Technik for accommodation in the Wilfried Haslauer Haus research station during the field studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Junker.

Additional information

Communicated by Roland Brandl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, M., Wagner, S., Gros, P. et al. Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164, 971–980 (2010). https://doi.org/10.1007/s00442-010-1720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1720-3

Keywords

Navigation