Skip to main content

Advertisement

Log in

Host use of a specialist lichen-feeder: dealing with lichen secondary metabolites

  • Plant-Animal interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Host use by herbivores is largely determined by host properties such as nutrient content and chemical defence against foragers. The impacts of these attributes on a herbivore may largely depend on its life cycle stage. Lichen species are known to differ in nutritional quality and level of chemical defence and, consequently, vary as fodder for herbivores. The aim of this study was to explore the impact of several lichen species and the presence of their secondary metabolites on their use as hosts by a specialist lichen-feeder, Cleorodes lichenaria. This study also addressed, for the first time, how a specialist lichen-feeder deals with different lichen secondary metabolites. In the beginning of their development, larvae grew better on Xanthoria parietina than on the other host lichens, whereas older larvae grew best on Ramalina fraxinea. Lichen secondary chemicals in R. fraxinea and Parmelia sulcata hindered larval growth in the beginning but after 75 days lichen secondary chemicals had no impact on the mass of larvae. Physodic acids in Hypogymnia physodes were lethal to larvae. In general, larvae metabolized 70–95% of ingested lichen secondary chemicals and the rest of these were excreted in frass. Lichen secondary metabolites in P. sulcata restrict and in H. physodes prevent their use as a host for C. lichenaria larvae. Our main finding, the ability of larvae to metabolize several lichen secondary metabolites, indicates digestive adaptation to these chemicals. No signs of sequestration of these chemicals were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1416

    Article  CAS  PubMed  Google Scholar 

  • Backor M, Dvorsky K, Fahselt D (2003) Influence of invertebrate feeding on the lichen Cladonia pocillum. Symbiosis 34:281–291

    Google Scholar 

  • Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR, Zangerl AR (1993) Furanocoumarin metabolism in Papilio polyxenes: biochemistry, genetic variability, and ecological significance. Oecologia 95:370–375

    Article  Google Scholar 

  • Berenbaum MR, Zangerl AR, Lee K (1989) Chemical barriers to adaptation by a specialist herbivore. Oecologia 80:501–506

    Article  Google Scholar 

  • Bernays EA, Chapmann RF (1994) Host-plant selection by phytophagous insects. Chapmann & Hall, New York

    Google Scholar 

  • Braby MF (1994) The significance of egg size variation in butterflies in relation to hostplant quality. Oikos 71:119–129

    Article  Google Scholar 

  • Calcagno MP, Coll J, Lloria J, Faini F, Alonso-Amelot ME (2002) Evaluation of synergism in the feeding deterrence of some furanocoumarins on Spodoptera littoralis. J Chem Ecol 28:175–194

    Article  CAS  PubMed  Google Scholar 

  • Cocchietto M, Skert N, Nimis PF, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ, Nachapong M (1984) Facultative defences and specialist herbivores? Cinnabar moth (Tyria jacobaeae) on the regrowth foliage of ragwort (Senecio jacobaea). Ecol Entomol 9:389–393

    Article  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1977) Second supplement to chemical and botanical guide to lichen products. The American Bryological and Lichenological Society, Missouri Botanical Garden, St. Louis

    Google Scholar 

  • Dyer LA, Dodson CD, Stireman JO III, Tobler MA, Smilanich AM, Fincher RM, Letourneau DK (2003) Synergistic effects of three piper amides on generalist and specialist herbivores. J Chem Ecol 29:2499–2544

    Article  CAS  PubMed  Google Scholar 

  • Dzubaj A, Backor M, Tomko J, Peli E, Tuba Z (2008) Tolerance of the lichen Xanthoria parietina (L.) th. fr. to metal stress. Ecotoxicol Environ Saf 70:319–326

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Thomas JN (ed) Lichen biology. Cambridge University Press, Cambridge, pp 154–180

    Google Scholar 

  • Emmerich R, Giez I, Lange OL, Proksch P (1993) Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 33:1389–1394

    Article  CAS  Google Scholar 

  • Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165

    CAS  Google Scholar 

  • Farrell B, Mitter C (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (Chrysomelidae) and the lamiales diversified in parallel? Evolution 44:1389–1403

    Article  Google Scholar 

  • Farrell BD, Mitter C (1998) The timing of insect/plant diversification: Might tetraopes (Coleoptera: Cerambycidae) and asclepias (Asclepiadaceae) have co-evolved? Biol J Linn Soc 63:553–577

    Google Scholar 

  • Feige GB, Lumbsch HT, Huneck S, Elix JA (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. J Chromatogr 646:417–427

    Article  CAS  Google Scholar 

  • Friedl T, Büdel B (1996) Photobionts. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 8–23

    Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105

    Article  PubMed  Google Scholar 

  • Giez I, Lange OL, Proksch P (1994) Growth retarding activity of lichen substances against the polyphagous herbivorous insect Spodoptera littoralis. Biochem Syst Ecol 22:113–120

    Article  CAS  Google Scholar 

  • Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp Appl 104:15–25

    Article  CAS  Google Scholar 

  • Hägele BF, Rowell-Rahier M (2000) Choice, performance and heritability of performance of specialist and generalist insect herbivores towards cacalol and seneciphylline, two allelochemicals of Adenostyles alpina (Asteraceae). J Evol Biol 13:131–142

    Article  Google Scholar 

  • Hesbacher S, Giez I, Embacher G, Fielder K, Max W, Trawoger A, Turk R, Lange OL, Proksch P (1995) Sequestration of lichen compounds by lichen-feeding members of the arctiidae (Lepidoptera). J Chem Ecol 21:2079–2089

    Article  CAS  Google Scholar 

  • Hwang S, Hwang F, Shen T (2007) Shifts in developmental diet breadth of Lymantria xylina (Lepidoptera: Lymantriidae). J Econ Entomol 100:1166–1172

    Article  PubMed  Google Scholar 

  • Hyvärinen M, Koopmann R, Hormi O, Tuomi J (2000) Phenols in reproductive and somatic structures of lichens: a case of optimal defence? Oikos 91:371–375

    Article  Google Scholar 

  • Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61:729–736

    Article  CAS  PubMed  Google Scholar 

  • Johnson KS, Scriber JM, Nair M (1996) Phenylpropenoid phenolics in sweetbay magnolia as chemical determinants of host use in saturniid silkmoths (Callosamia). J Chem Ecol 22:1955–1970

    Article  CAS  Google Scholar 

  • Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33:641–664

    Article  Google Scholar 

  • Krischik VA, Goth RW, Barbosa P (1991) Generalized plant defense: effects on multiple species. Oecologia 85:562–571

    Article  Google Scholar 

  • Landau I, Mueller-Schaerer H, Ward PI (1994) Influence of cnicin, a sesquiterpene lactone of Centaurea maculosa (asteraceae), on specialist and generalist insect herbivores. J Chem Ecol 20:929–942

    Article  CAS  Google Scholar 

  • Lawrey LD (1983) Lichen herbivore preference: a test of two hypotheses. Am J Bot 70:1188–1194

    Article  Google Scholar 

  • Lawrey JD (1984) Biology of lichenized fungi. Praeger, New York

    Google Scholar 

  • Lawrey JD (1989) Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. Bryologist 92:326–328

    Article  CAS  Google Scholar 

  • Lumbsch HT (2002) Analysis of phenolic products in lichens for identification and taxonomy. In: Kranner I, Beckett R, Varma A (eds) Protocols in lichenology: culturing, biochemistry, ecophysiology, and use in biomonitoring. Springer, Berlin, pp 281–295

    Google Scholar 

  • Macel M, Klinkhamer PI, Vrieling K, van der Meijden E (2002) Diversity of pyrrolizidine alkaloids in Senecio species does not affect the specialist herbivore Tyria jacobaeae. Oecologia 133:541–550

    Article  Google Scholar 

  • Mikkola K, Jalas I, Peltonen O (1989) Suomen perhoset. mittarit 2. Suomen perhostutkijain seura. Recallmed Oy, Hanko

    Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  • Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. British Lichen Society, London

    Google Scholar 

  • Pöykkö H (2006) Females and larvae of a geometrid moth, Cleorodes lichenaria, prefer a lichen host that assures shortest larval period. Environ Entomol 35:1669–1676

    Article  Google Scholar 

  • Pöykkö H (2009) Egg maturation and oviposition strategy of a capital breeder, Cleorodes lichenaria, feeding on lichens at the larval stage. Ecol Entomol 34:254–261

    Article  Google Scholar 

  • Pöykkö H, Hyvärinen M (2003) Host preference and performance of lichenivorous Eilema spp. larvae in relation to lichen secondary metabolites. J Anim Ecol 72:383–390

    Article  Google Scholar 

  • Pöykkö H, Hyvärinen M, Bačkor M (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86:2623–2632

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rawlins JE (1984) Mycophagy in lepidoptera. In: Wheeler Q, Blackwell M (eds) Fungus–insect relationships. Perspectives in ecology and evolution. Columbia University Press, New York, pp 382–423

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2004) Insect–plant biology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Scott IM, Puniani E, Durst T, Phelps D, Merali S, Assabgui RA, Sanchez-Vindas P, Poveda L, Philogene BJR, Arnason JT (2002) Insecticidal activity of Piper tuberculatum jacq. extracts: synergistic interaction of piperamides. Agric For Entomol 4:137–144

    Article  Google Scholar 

  • Slansky F Jr (1979) Effect of the lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm, Spodoptera ornithogallii. Environ Entomol 8:865–868

    CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418

    Article  Google Scholar 

  • Solhaug KA, Gauslaa Y (2001) Acetone rinsing—a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30:301–315

    CAS  Google Scholar 

  • Stocker-Wörgötter E, Elix JA, Grube M (2004) Secondary chemistry of lichen-forming fungi: chemosyndromic variation and DNA-analyses of cultures and chemotypes in the Ramalina farinacea complex. Bryologist 107:152–162

    Article  Google Scholar 

  • Tay T, Turk AO, Yilmaz M, Turk H, Kivanc M (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Zeitschr Naturforsch C-J Biosci 59:384–388

    CAS  Google Scholar 

  • Wahlberg N (2001) The phylogenetics and biochemistry of host-plant specialization in melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–537

    Article  CAS  PubMed  Google Scholar 

  • Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval lepidoptera. Annu Rev Entomol 47:361–393

    Article  CAS  PubMed  Google Scholar 

  • Zovi D, Stastny M, Battisti A, Larsson S (2008) Ecological costs on local adaptation of an insect herbivore imposed by host plants and enemies. Ecology 89:1388–1398

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Faculty of Natural Sciences, University of Oulu, Finland, the Finnish Cultural Foundation and by the Slovak Grant Agency (VEGA 1/4337/07). Mr Mark Goodall has kindly revised the English language of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heikki Pöykkö.

Additional information

Communicated by Thomas Hoffmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöykkö, H., Bačkor, M., Bencúrová, E. et al. Host use of a specialist lichen-feeder: dealing with lichen secondary metabolites. Oecologia 164, 423–430 (2010). https://doi.org/10.1007/s00442-010-1682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1682-5

Keywords

Navigation