Skip to main content
Log in

Predator diversity enhances secondary production and decreases the likelihood of trophic cascades

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We manipulated the diversity of top predators in a three trophic level marine food web. The food web included four top benthic marine fish predators (black goby, rock goby, sea scorpion and shore rockling), an intermediate trophic level of small fish, and a lower trophic level of benthic invertebrates. We kept predator density constant and monitored the response of the lower trophic levels. As top predator diversity increased, secondary production increased. We also observed that in the presence of the manipulated fish predators, the density of small gobiid fish (intermediate consumers) was suppressed, releasing certain groups of benthic invertebrates (caprellid amphipods, copepods, nematodes and spirorbid worms) from heavy intermediate predation pressure. We attribute the mechanism responsible for this trophic cascade to a trait-mediated indirect interaction, with the small gobiid fish changing their use of space in response to altered predator diversity. In the absence of top fish predators, a full-blown trophic cascade occurs. Therefore the diversity of predators reduces the likelihood of trophic cascades occurring and hence provides insurance against the loss of an important ecosystem function (i.e. secondary production).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Bruno JF, O’Connor MI (2005) Cascading effects of predator diversity and omnivory in a marine food web. Ecol Lett 8:1048–1056

    Article  Google Scholar 

  • Byrnes J, Stachowicz JJ, Hultgren KM, Hughes AR, Olyarnik SV, Thornber CS (2006) Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol Lett 9:61–71

    PubMed  Google Scholar 

  • Byrnes JE, Reynolds PL, Stachowicz JJ (2007) Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2:e295

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Cohen JE, Pimm SL, Yodzis P, Saldana J (1993) Body sizes of animal predators and animal prey in food webs. J Anim Ecol 62:67–78

    Article  Google Scholar 

  • Costello MJ (1992) Abundance and spatial overlap of gobies (Gobiidae) in Lough-Hyne, Ireland. Environ Biol Fishes 33:239–248

    Article  Google Scholar 

  • Costello MJ, Myers AA (1996) Turnover of transient species as a contributor to the richness of a stable amphipod (Crustacea) fauna in a sea inlet. J Exp Mar Biol Ecol 202:49–62

    Article  Google Scholar 

  • Crumrine PW, Crowley PH (2003) Partitioning components of risk reduction in a dragonfly-fish intraguild predation system. Ecology 84:1588–1597

    Article  Google Scholar 

  • DeAngelis DL (1980) Energy-flow, nutrient cycling, and ecosystem resilience. Ecology 61:764–771

    Article  Google Scholar 

  • Duffy JE, Richardson JP, Canuel EA (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol Lett 6:637–645

    Article  Google Scholar 

  • Duffy JE, Carinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  PubMed  Google Scholar 

  • Eklov P, VanKooten T (2001) Facilitation among piscivorous predators: effects of prey habitat use. Ecology 82:2486–2494

    Google Scholar 

  • Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  • France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441:1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703

    Article  Google Scholar 

  • Gascuel D (2005) The trophic-level based model: a theoretical approach of fishing effects on marine ecosystems. Ecol Modell 189:315–332

    Article  Google Scholar 

  • Gobin JF, Warwick RM (2006) Geographical variation in species diversity: a comparison of marine polychaetes and nematodes. J Exp Mar Biol Ecol 330:234–244

    Article  Google Scholar 

  • Griffen BD (2006) Detecting emergent effects of multiple predator species. Oecologia 148:702–709

    Article  PubMed  Google Scholar 

  • Guidetti P (2007) Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs. Oecologia 154:513–520

    Article  PubMed  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol 70:934–944

    Article  Google Scholar 

  • Jolliffe PA (2000) The replacement series. J Ecol 88:371–385

    Article  Google Scholar 

  • Kneib RT (1988) Testing for indirect effects of predation in an intertidal soft-bottom community. Ecology 69:1795–1805

    Article  Google Scholar 

  • Losey JE, Denno RF (1998) Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152

    Google Scholar 

  • Martinez ND (1993) Effect of scale on food web structure. Science 260:242–243

    Article  PubMed  Google Scholar 

  • Nilsson E, Hertonsson P, Stenberg M, Brodersen J, Olsson K, Stenroth P, Lakowitz T, Bronmark C, Nystrom P, McIntosh AR (2006) Facilitation and interference among three predators affect their consumption of a stream-dwelling mayfly. Freshwater Biol 51:1507–1514

    Article  Google Scholar 

  • Okuyama T, Bolker BM (2007) On quantitative measures of indirect interactions. Ecol Lett 10:264–271

    Article  PubMed  Google Scholar 

  • Osenberg CW, Mittlebach GG (1996) The relative importance of resource limitation and predator limitation in food chains. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, New York

    Google Scholar 

  • Pimm SL (2002) Food webs. University of Chicago Press, Chicago

    Google Scholar 

  • Polis GA (1991) Complex trophic interactions in deserts—an empirical critique of food-web theory. Am Nat 138:123–155

    Article  Google Scholar 

  • Pomeroy LR (1970) The strategy of nutrient cycling. Annu Rev Ecol Syst 1:171–190

    Article  Google Scholar 

  • Posey MH, Hines AH (1991) Complex predator–prey interactions within an estuarine benthic community. Ecology 72:2155–2169

    Article  Google Scholar 

  • Prasad RP, Snyder WE (2006) Diverse trait-mediated interactions in a multi-predator, multi-prey community. Ecology 87:1131–1137

    Article  PubMed  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  • Roff JC, Turner JT, Webber MK, Hopcroft RR (1995) Bacterivory by tropical copepod nauplii—extent and possible significance. Aquat Microb Ecol 9:165–175

    Article  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Article  Google Scholar 

  • Schoener TW (1989) Food webs from the small to the large. Ecology 70:1559–1589

    Article  Google Scholar 

  • Shima JS (2001) Regulation of local populations of a coral reef fish via joint effects of density- and number-dependent mortality. Oecologia 126:58–65

    Article  Google Scholar 

  • Siddon CE, Witman JD (2004) Behavioral indirect interactions: multiple predator effects and prey switching in the rocky subtidal. Ecology 85:2938–2945

    Article  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  Google Scholar 

  • Soluk DA, Collins NC (1988) Synergistic interactions between fish and stoneflies—facilitation and interference among stream predators. Oikos 52:94–100

    Article  Google Scholar 

  • Stein RA, Magnuson JJ (1976) Behavioral response of crayfish to a fish predator. Ecology 57:751–761

    Article  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Underwood AJ, Chapman MG (2006) Early development of subtidal macrofaunal assemblages: relationships to period and timing of colonization. J Exp Mar Biol Ecol 330:221–233

    Article  Google Scholar 

  • Van Son TC, Thiel M (2006) Multiple predator effects in an intertidal food web. J Anim Ecol 75:25–32

    Article  PubMed  Google Scholar 

  • Vance-Chalcraft HD, Soluk DA (2005) Multiple predator effects result in risk reduction for prey across multiple prey densities. Oecologia 144:472–480

    Article  PubMed  Google Scholar 

  • Vranken G, Herman PMJ, Vincx M, Heip C (1986) A reevaluation of marine nematode productivity. Hydrobiologia 135:193–196

    Article  Google Scholar 

  • Weis JJ, Cardinale BJ, Forshay KJ, Ives AR (2007) Effects of species diversity on community biomass production change over the course of succession. Ecology 88:929–939

    Article  PubMed  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Berlow EL, Dunne JA, Barabasi AL, Martinez ND (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci USA 99:12913–12916

    Article  PubMed  CAS  Google Scholar 

  • Wootton JT (1997) Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol Monogr 67:45–64

    Article  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gabriel Du Rocher, Allen Whittaker, Isobel Abbot, Aurélie Aubry and Órla McLaughlin for their help in setting up and retrieving the cages used in the experiments. We also thank Nessa O’Connor, John Griffin, Aurélie Aubry and Órla McLaughlin for valuable comments on early drafts of the manuscript. The work was funded by the Department of Zoology, Ecology and Plant Science at University College Cork and the Irish Research Council for Science Engineering and Technology. The experiments that were carried out complied with all current Irish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin J. O’Gorman.

Additional information

Communicated by Craig Osenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Gorman, E.J., Enright, R.A. & Emmerson, M.C. Predator diversity enhances secondary production and decreases the likelihood of trophic cascades. Oecologia 158, 557–567 (2008). https://doi.org/10.1007/s00442-008-1165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1165-0

Keywords

Navigation