Skip to main content
Log in

Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland

  • Global Change Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Although global changes can alter ecosystem nutrient dynamics indirectly as a result of their effects on plant litter quality, the interactive effects of global changes on plant litter remain largely unexplored in natural communities. We investigated the effects of elevated CO2, N deposition, warming and increased precipitation on the composition of organic compounds in plant litter in a fully-factorial experiment conducted in a California annual grassland. While lignin increased within functional groups under elevated CO2, this effect was attenuated by warming in grasses and by water additions in forbs. CO2-induced increases in lignin within functional groups also were counteracted by an increase in the relative biomass of forbs, which contained less lignin than grasses. Consequently, there was no net change in the overall lignin content of senesced tissue at the plot level under elevated CO2. Nitrate additions increased N in both grass and forb litter, although this effect was attenuated by water additions. Relative to changes in N within functional groups, changes in functional group dominance had a minor effect on overall litter N at the plot level. Nitrate additions had the strongest effect on decomposition, increasing lignin losses from Avena litter and interacting with water additions to increase decomposition of litter of other grasses. Increases in lignin that resulted from elevated CO2 had no effect on decomposition but elevated CO2 increased N losses from Avena litter. Overall, the interactions among elements of global change were as important as single-factor effects in influencing plant litter chemistry. However, with the exception of variation in N, litter quality had little influence on decomposition over the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernhard-Reversat F, Main G, Holl K, Loumeto J, Ngao J (2003) Fast disappearance of the water-soluble phenolic fraction in eucalypt leaf litter during laboratory and field experiments. Appl Soil Ecol 23:273–278

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Google Scholar 

  • Chadwick DR, Ineson P, Woods C, Piearce TG (1998) Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol Biochem 30:47–55

    Article  CAS  Google Scholar 

  • Cotrufo MF, Ineson P, Rowland AP (1994) Decomposition of tree leaf litters grown under elevated CO2—effect of litter quality. Plant Soil 163:121–130

    Google Scholar 

  • Cotrufo MF, Briones MJI, Ineson P (1998) Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol Biochem 30:1565–1571

    Article  CAS  Google Scholar 

  • Deschamps FC (1999) Effects of growing periods on digestion and chemical composition of elephant grass cultivar tissues. Braz J Anim Sci 28:1358–1369

    Google Scholar 

  • Dukes JS, Field CB (2000) Diverse mechanisms for CO2 effects on grassland litter decomposition. Global Change Biol 6:145–154

    Article  Google Scholar 

  • Dukes JS, Hungate BA (2002) Elevated carbon dioxide and litter decomposition in California annual grasslands: which mechanisms matter? Ecosystems 5:171–183

    Article  CAS  Google Scholar 

  • Finzi AC, Schlesinger AH (2002) Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biol 8:1217–1229

    Article  Google Scholar 

  • Franck VM, Hungate BA, Chapin FS, Field CB (1997) Decomposition under elevated CO2: dependence on plant species and nutrient supply. Biogeochemistry 36:223–237

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3:484–494

    Article  CAS  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2003) Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137:578–586

    Article  PubMed  Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579

    Article  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    CAS  Google Scholar 

  • IPCC (2001) Working group 1 third assessment report. Cambridge University Press, Cambridge

  • Kemp PR, Waldecker DG, Owensby CE, Reynolds JF, Vinginia RA (1994) Effects of elevated CO2 and nitrogen-fertilization pretreatments on decomposition on tallgrass prairie leaf-litter. Plant Soil 165:115–127

    CAS  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Kubiske ME, Ashby JA, Holmes WE (2001a) Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2 and varying N availability. Global Change Biol 7:65–74

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Kubiske ME, Holmes WE (2001b) Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition. Oikos 94:403–416

    Google Scholar 

  • Kirk RE (1995) Experimental design: procedures for the behavioral sciences, 3rd edn. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Kögel-Knaber I (1995) Composition of soil organic matter. In: Nannipieri P, Alef K (eds) Methods in applied soil microbiology and biochemistry. Academic, New York, pp 66–78

    Google Scholar 

  • Liao JX, Wang GX (2000) The effects of increasing CO2, temperature and drought on the chemical composition of wheat leaves. Acta Phytoecol Sin 24:744–747

    Google Scholar 

  • Liao JX, Hou ZD, Wang GX (2002) Effects of elevated CO2 and drought on chemical composition and decomposition of spring wheat (Triticum aestivum). Funct Plant Biol 29:891–897

    Article  CAS  Google Scholar 

  • Lutze JL, Gifford RM, Adams HN (2000) Litter quality and decomposition in Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years of growth. Global Change Biol 6:13–24

    Article  Google Scholar 

  • Marrs RH, Roberts RD, Skeffington RA, Bradshaw AD (1983) Nitrogen and the development of ecosystems. In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell, Oxford, pp 113–136

    Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, van Breeman N, Wallen B (2001a) Spatial and temporal performance of the MiniFACE (free air CO2 enrichment) system on bog ecosystems in northern and central Europe. Environ Monit Assess 66:107–127

    Article  CAS  PubMed  Google Scholar 

  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, de Angelis P, Scarascia-Mugnozza G (2001b) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476

    Article  Google Scholar 

  • Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF (1998) A question of litter quality. Nature 396:17–18

    Article  CAS  Google Scholar 

  • Norby RJ, Long TM, Hartz-Rubin JS, O’Neill EG (2000) Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant Soil 224:15–29

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • O’Neill EG, Norby RJ (1996) Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic, New York, pp 87–103

    Google Scholar 

  • Petropoulou Y, Kyparissis A, Nikolopoulos D, Manetas Y (1995) Enhanced UV-B radiation alleviates the adverse-effects of summer drought in two Mediterranean pines under field conditions. Physiol Plant 94:37–44

    Article  CAS  Google Scholar 

  • Ribeiro C, Madeira M, Araujo MC (2002) Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. For Ecol Manage 171:31–41

    Article  Google Scholar 

  • Scalbert A, Monties B, Janin G (1989) Tannins in wood—comparison of different estimation methods. J Agric Food Chem 37:1324–1329

    CAS  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Google Scholar 

  • Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon ER (ed) CO2 and plants. Westview, Boulder, pp 177–222

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Taylor KACC (1995) A modification of the phenol sulfuric-acid assay for total carbohydrates giving more comparable absorbances. Appl Biochem Biotech 53:207–214

    CAS  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Weatherly HE, Zitzer SF, Coleman JS, Arnone JA (2003) In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO2 and interannual climate variability. Global Change Biol 9:1223–1233

    Article  Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • Willms WD, Beauchemin KA (1991) Cutting frequency and cutting height effects on forage quality of rough fescue and parry oat grass. Can J Anim Sci 71:87–96

    Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003) Responses of a California grassland community to experimental climate change, elevated CO2, and N deposition. Ecol Monogr 73:585–604

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation through a Biocomplexity Grant to Stanford University and the Carnegie Institution of Washington. Additional funding was provided by a grant from the David and Lucile Packard Foundation and by the Natural Sciences and Engineering Research Council of Canada through a postdoctoral fellowship to H.A.L.H. E.E.C. was supported by a U.S. Department of Energy Global Change Education Program GREF Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh A. L. Henry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, H.A.L., Cleland, E.E., Field, C.B. et al. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142, 465–473 (2005). https://doi.org/10.1007/s00442-004-1713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-004-1713-1

Keywords

Navigation