Skip to main content

Advertisement

Log in

Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell–cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  • Ahringer J (2003) Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol 15:73–81

    CAS  PubMed  Google Scholar 

  • Ajduk A, Biswas Shivhare S, Zernicka-Goetz M (2014) The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo. Dev Biol 392:133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcon VB (2010) Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod 83:347–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y (2014) Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141:2813–2824

    CAS  PubMed  Google Scholar 

  • Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P (1998) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA 95:5082–5087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artus J, Chazaud C (2014) A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell Mol Life Sci 71:3327–3338

    CAS  PubMed  Google Scholar 

  • Artus J, Kang M, Cohen-Tannoudji M, Hadjantonakis AK (2013) PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst. Stem Cells 31:1932–1941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artus J, Piliszek A, Hadjantonakis AK (2011) The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 350:393–404

    CAS  PubMed  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CE, Watson AJ (2013) p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst. PloS one 8:e59528

  • Bessonnard S, De Mot L, Gonze D, Barriol M, Dennis C, Goldbeter A, Dupont G, Chazaud C (2014) Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141:3637–3648

    CAS  PubMed  Google Scholar 

  • Betts DH, Madan P (2008) Permanent embryo arrest: molecular and cellular concepts. Mol Hum Reprod 14:445–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biggins JS, Royer C, Watanabe T, Srinivas S (2015) Towards understanding the roles of position and geometry on cell fate decisions during preimplantation development. Semin Cell Dev Biol 47–48:74–79

    PubMed  PubMed Central  Google Scholar 

  • Blakeley P, Fogarty NM, Del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK (2015) Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142:3613

    PubMed  PubMed Central  Google Scholar 

  • Bloom TL (1989) The effects of phorbol ester on mouse blastomeres: a role for protein kinase C in compaction? Development 106:159–171

    CAS  PubMed  Google Scholar 

  • Bornens M (2008) Organelle positioning and cell polarity. Nat Rev Mol Cell Biol 9:874–886

    CAS  PubMed  Google Scholar 

  • Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P (2015) Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev Cell 35:366–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bou G, Liu S, Sun M, Zhu J, Xue B, Guo J, Zhao Y, Qu B, Weng X, Wei Y, Lei L, Liu Z (2017) CDX2 is essential for cell proliferation and polarity in porcine blastocysts 144:1296–1306

  • Brewer JR, Molotkov A, Mazot P, Hoch RV, Soriano P (2015) Fgfr1 regulates development through the combinatorial use of signaling proteins. Genes Dev 29:1863–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce AW, Zernicka-Goetz M (2010) Developmental control of the early mammalian embryo: competition among heterogeneous cells that biases cell fate. Curr Opin Genet Dev 20:485–491

    CAS  PubMed  Google Scholar 

  • Chazaud C, Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143:1063–1074

    CAS  PubMed  Google Scholar 

  • Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624

    CAS  PubMed  Google Scholar 

  • Chisholm JC, Houliston E (1987) Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101:565–582

    CAS  PubMed  Google Scholar 

  • Clayton L, Hall A, Johnson MH (1999) A role for Rho-like GTPases in the polarisation of mouse eight-cell blastomeres. Dev Biol 205:322–331

    CAS  PubMed  Google Scholar 

  • Clayton L, Stinchcombe SV, Johnson MH (1993) Cell surface localisation and stability of uvomorulin during early mouse development. Zygote 1:333–344

    CAS  PubMed  Google Scholar 

  • Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Current Biology : CB 23:1195–1201

    CAS  PubMed  Google Scholar 

  • Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coucouvanis E, Martin GR (1999) BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 126:535–546

    CAS  PubMed  Google Scholar 

  • Dard N, Louvet-Vallee S, Maro B (2009) Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos. PloS one 4:e8171

  • Dard N, Louvet-Vallee S, Santa-Maria A, Maro B (2004) Phosphorylation of ezrin on threonine T567 plays a crucial role during compaction in the mouse early embryo. Dev Biol 271:87–97

    CAS  PubMed  Google Scholar 

  • De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D, Knowles BB (2004) Maternal beta-catenin and E-cadherin in mouse development. Development 131:4435–4445

    PubMed  Google Scholar 

  • Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–4231

    CAS  PubMed  Google Scholar 

  • Ducibella T, Albertini DF, Anderson E, Biggers JD (1975) The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol 45:231–250

    CAS  PubMed  Google Scholar 

  • Ducibella T, Anderson E (1975) Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol 47:45–58

    CAS  PubMed  Google Scholar 

  • Ducibella T, Ukena T, Karnovsky M, Anderson E (1977) Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol 74:153–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert JJ, Fleming TP (2008) Tight junction biogenesis during early development. Biochem Biophys Acta 1778:717–728

    CAS  PubMed  Google Scholar 

  • Edwards RG, Purdy JM, Steptoe PC, Walters DE (1981) The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol 141:408–416

    CAS  PubMed  Google Scholar 

  • Emura N, Saito Y, Miura R, Sawai K (2020) Effect of downregulating the Hippo pathway members YAP1 and LATS2 transcripts on early development and gene expression involved in differentiation in porcine embryos. Cell Reprogram 22:62–70

    CAS  PubMed  Google Scholar 

  • Emura N, Sakurai N, Takahashi K, Hashizume T, Sawai K (2016) OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos. J Reprod Dev 62:401–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emura N, Takahashi K, Saito Y, Sawai K (2019) The necessity of TEAD4 for early development and gene expression involved in differentiation in porcine embryos. J Reprod Dev 65:361–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etemad-Moghadam B, Guo S, Kemphues KJ (1995) Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83:743–752

    CAS  PubMed  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    CAS  PubMed  Google Scholar 

  • Faria TN, Ogren L, Talamantes F, Linzer DI, Soares MJ (1991) Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta. Biol Reprod 44:327–331

    CAS  PubMed  Google Scholar 

  • Fierro-Gonzalez JC, White MD, Silva JC, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433

    CAS  PubMed  Google Scholar 

  • Fleming TP, Johnson MH (1988) From egg to epithelium. Annu Rev Cell Biol 4:459–485

    CAS  PubMed  Google Scholar 

  • Fleming TP, McConnell J, Johnson MH, Stevenson BR (1989) Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1. J Cell Biol 108:1407–1418

    CAS  PubMed  Google Scholar 

  • Fleming TP, Pickering SJ (1985) Maturation and polarization of the endocytotic system in outside blastomeres during mouse preimplantation development. J Embryol Exp Morphol 89:175–208

    CAS  PubMed  Google Scholar 

  • Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, Chazaud C (2011) Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell 21:1005–1013

    CAS  PubMed  Google Scholar 

  • Frum T, Murphy TM, Ralston A (2018a) HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. 7

  • Frum T, Murphy TM, Ralston A (2018b) HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. Elife 7

  • Frum T, Ralston A (2015) Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends in Genetics : TIG 31:402–410

    CAS  PubMed  Google Scholar 

  • Gerbe F, Cox B, Rossant J, Chazaud C (2008) Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev Biol 313:594–602

    CAS  PubMed  Google Scholar 

  • Goissis MD, Cibelli JB (2014) Functional characterization of CDX2 during bovine preimplantation development in vitro. Mol Reprod Dev 81:962–970

    CAS  PubMed  Google Scholar 

  • Goldin SN, Papaioannou VE (2003) Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis (New York, NY : 2000) 36:40–47

  • Graham SJ, Wicher KB, Jedrusik A, Guo G, Herath W, Robson P, Zernicka-Goetz M (2014) BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo. Nat Commun 5:5667

    CAS  PubMed  Google Scholar 

  • Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685

    CAS  PubMed  Google Scholar 

  • Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138:9–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131

    CAS  PubMed  Google Scholar 

  • Handyside AH (1978) Time of commitment of inside cells isolated from preimplantation mouse embryos. J Embryol Exp Morphol 45:37–53

    CAS  PubMed  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Sasaki H (2019) Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. Dev Cell 50:139–154 e135

  • Hermitte S, Chazaud C (2014) Primitive endoderm differentiation: from specification to epithelium formation. Philos Trans R Soc Lond B Biol Sci 369:20130537

    PubMed  PubMed Central  Google Scholar 

  • Hirate Y, Hirahara S, Inoue K, Kiyonari H, Niwa H, Sasaki H (2015) Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev Growth Differ 57:544–556

    CAS  PubMed  Google Scholar 

  • Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Current Biology : CB 23:1181–1194

    CAS  PubMed  Google Scholar 

  • Holden JK, Cunningham CN (2018) Targeting the Hippo pathway and cancer through the TEAD family of transcription factors. Cancers 10

  • Home P, Kumar RP, Ganguly A, Saha B, Milano-Foster J, Bhattacharya B, Ray S, Gunewardena S, Paul A, Camper SA, Fields PE, Paul S (2017) Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development 144:876–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S (2009) GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem 284:28729–28737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Nat Acad Sci 104(5):1631–1636. https://doi.org/10.1073/pnas.0605266104

    Article  CAS  Google Scholar 

  • Houliston E, Maro B (1989) Posttranslational modification of distinct microtubule subpopulations during cell polarization and differentiation in the mouse preimplantation embryo. J Cell Biol 108:543–551

    CAS  PubMed  Google Scholar 

  • Houliston E, Pickering SJ, Maro B (1989) Alternative routes for the establishment of surface polarity during compaction of the mouse embryo. Dev Biol 134:342–350

    CAS  PubMed  Google Scholar 

  • Humiecka M, Szpila M, Klos P, Maleszewski M, Szczepanska K (2017) Mouse blastomeres acquire ability to divide asymmetrically before compaction. PloS one 12:e0175032

  • Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Current Biology : CB 14:736–741

    CAS  PubMed  Google Scholar 

  • Hyafil F, Morello D, Babinet C, Jacob F (1980) A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934

    CAS  PubMed  Google Scholar 

  • Irvine KD, Harvey KF (2015) Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb Perspect Biol 7

  • Iwata S, Tachtsidis I, Takashima S, Matsuishi T, Robertson NJ, Iwata O (2014) Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant. International Journal of Developmental Neuroscience : the Official Journal of the International Society for Developmental Neuroscience 37:1–7

    Google Scholar 

  • Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2:531–539

    CAS  PubMed  Google Scholar 

  • Johnson MH (2009) From mouse egg to mouse embryo: polarities, axes, and tissues. Annu Rev Cell Dev Biol 25:483–512

    CAS  PubMed  Google Scholar 

  • Johnson MH, Maro B, Takeichi M (1986) The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J Embryol Exp Morphol 93:239–255

    CAS  PubMed  Google Scholar 

  • Johnson MH, McConnell J, Van Blerkom J (1984) Programmed development in the mouse embryo. J Embryol Exp Morphol 83(Suppl):197–231

    CAS  PubMed  Google Scholar 

  • Johnson MH, McConnell JM (2004) Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol 15:583–597

    CAS  PubMed  Google Scholar 

  • Johnson MH, Ziomek CA (1981a) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80

    CAS  PubMed  Google Scholar 

  • Johnson MH, Ziomek CA (1981b) Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J Cell Biol 91:303–308

    CAS  PubMed  Google Scholar 

  • Kaneko KJ, DePamphilis ML (2013) TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 140:3680–3690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang M, Piliszek A, Artus J, Hadjantonakis AK (2013) FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 140:267–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanka J (2003) Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59:3–19

    CAS  PubMed  Google Scholar 

  • Karasek C, Ashry M, Driscoll CS, Knott JG (2020) A tale of two cell-fates: role of the Hippo signaling pathway and transcription factors in early lineage formation in mouse preimplantation embryos. Mol Hum Reprod 26:653–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kidder GM, McLachlin JR (1985) Timing of transcription and protein synthesis underlying morphogenesis in preimplantation mouse embryos. Dev Biol 112:265–275

    CAS  PubMed  Google Scholar 

  • Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394:142–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T (2017) The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Dev Cell 40:235–247 e237

  • Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F (1999) The transcription factor GATA6 is essential for early extraembryonic development. Development 126:723–732

    CAS  PubMed  Google Scholar 

  • Kuijk EW, Du Puy L, Van Tol HT, Oei CH, Haagsman HP, Colenbrander B, Roelen BA (2008) Differences in early lineage segregation between mammals. Developmental Dynamics : an Official Publication of the American Association of Anatomists 237:918–927

    CAS  Google Scholar 

  • Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:e42

  • Kuroda S, Fukata M, Nakagawa M, Kaibuchi K (1999) Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun 262:1–6

    CAS  PubMed  Google Scholar 

  • Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91:8263–8267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251

    PubMed  Google Scholar 

  • Leung CY, Zhu M, Zernicka-Goetz M (2016) Polarity in cell-fate acquisition in the early mouse embryo. Curr Top Dev Biol 120:203–234

    CAS  PubMed  Google Scholar 

  • Levy JB, Johnson MH, Goodall H, Maro B (1986) The timing of compaction: control of a major developmental transition in mouse early embryogenesis. J Embryol Exp Morphol 95:213–237

    CAS  PubMed  Google Scholar 

  • Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T (2000) A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2:540–547

    CAS  PubMed  Google Scholar 

  • Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE (2012) Myosin-X functions in polarized epithelial cells. Mol Biol Cell 23:1675–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorthongpanich C, Issaragrisil S (2015) Emerging role of the Hippo signaling pathway in position sensing and lineage specification in mammalian preimplantation embryos. Biol Reprod 92:143

    PubMed  Google Scholar 

  • Lorthongpanich C, Messerschmidt DM, Chan SW, Hong W, Knowles BB, Solter D (2013) Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev 27:1441–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louvet-Vallee S, Dard N, Santa-Maria A, Aghion J, Maro B (2001) A major posttranslational modification of ezrin takes place during epithelial differentiation in the early mouse embryo. Dev Biol 231:190–200

    CAS  PubMed  Google Scholar 

  • Louvet S, Aghion J, Santa-Maria A, Mangeat P, Maro B (1996) Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo. Dev Biol 177:568–579

    CAS  PubMed  Google Scholar 

  • Magnuson T, Demsey A, Stackpole CW (1977) Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy. Dev Biol 61:252–261

    CAS  PubMed  Google Scholar 

  • Maitre JL, Berthoumieux H, Krens SF, Salbreux G, Julicher F, Paluch E, Heisenberg CP (2012) Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:253–256

    CAS  PubMed  Google Scholar 

  • Maitre JL, Niwayama R, Turlier H, Nedelec F, Hiiragi T (2015) Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol 17:849–855

    CAS  PubMed  Google Scholar 

  • Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T (2016) Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, Mitani A, Nagase T, Yatomi Y, Aburatani H, Nakagawa O, Small EV, Cobo-Stark P, Igarashi P, Murakami M, Tominaga J, Sato T, Asano T, Kurihara Y, Kurihara H (2008) Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol 294(3):F542–F553. https://doi.org/10.1152/ajprenal.00201.2007

    Article  CAS  PubMed  Google Scholar 

  • Mana-Capelli S, Paramasivam M, Dutta S, McCollum D (2014) Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell 25:1676–1685

    PubMed  PubMed Central  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    CAS  PubMed  Google Scholar 

  • McDole K, Xiong Y, Iglesias PA, Zheng Y (2011) Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 355:239–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, Lemmers B, Salmena L, Hakem A, Fish J, Kassam F, Squire J, Bruneau BG, Hande MP, Hakem R (2004) Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J 23:3677–3688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Memili E, First NL (2000) Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote (cambridge, England) 8:87–96

    CAS  Google Scholar 

  • Menchero S, Sainz de Aja J, Manzanares M (2018) Our first choice: cellular and genetic underpinnings of trophectoderm identity and differentiation in the mammalian embryo. Curr Top Dev Biol 128:59–80

    CAS  PubMed  Google Scholar 

  • Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihajlovic AI, Bruce AW (2017) The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity. Open Biol 7

  • Mo JS, Park HW, Guan KL (2014) The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 15:642–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P (2017) Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev Cell 41:511-526.e514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SA, Guo Y, Zernicka-Goetz M (2012) Developmental plasticity is bound by pluripotency and the Fgf and Wnt signaling pathways. Cell Rep 2:756–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12:3579–3590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motosugi N, Dietrich JE, Polanski Z, Solter D, Hiiragi T (2006) Space asymmetry directs preferential sperm entry in the absence of polarity in the mouse oocyte. PLoS Biol 4:e135

  • Namgoong S, Kim NH (2016) Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 15:1830–1843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negrón-Pérez VM, Hansen PJ (2018) Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol Reprod 98:170–183

    PubMed  Google Scholar 

  • Nichols J, Silva J, Roode M, Smith A (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136:3215–3222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    CAS  PubMed  Google Scholar 

  • Nikas G, Ao A, Winston RM, Handyside AH (1996) Compaction and surface polarity in the human embryo in vitro. Biol Reprod 55:32–37

    CAS  PubMed  Google Scholar 

  • Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410

    CAS  PubMed  Google Scholar 

  • Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    CAS  PubMed  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    CAS  PubMed  Google Scholar 

  • Oh S, Lee D, Kim T, Kim TS, Oh HJ, Hwang CY, Kong YY, Kwon KS, Lim DS (2009) Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse. Mol Cell Biol 29:6309–6320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi Y, Huber W (2014) Cell-to-Cell Expression Variability Followed by Signal Reinforcement Progressively Segregates Early Mouse Lineages 16:27–37

    CAS  Google Scholar 

  • Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P, Kurimoto K, Oles AK, Arauzo-Bravo MJ, Saitou M, Hadjantonakis AK, Hiiragi T (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16:27–37

    CAS  PubMed  Google Scholar 

  • Ohsugi M, Ohsawa T, Semba R (1993) Similar responses to pharmacological agents of 1,2-OAG-induced compaction-like adhesion of two-cell mouse embryo to physiological compaction. J Exp Zool 265:604–608

    CAS  PubMed  Google Scholar 

  • Ota M, Sasaki H (2008) Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135:4059–4069

    CAS  PubMed  Google Scholar 

  • Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pauken CM, Capco DG (1999) Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol Reprod Dev 54:135–144

    CAS  PubMed  Google Scholar 

  • Pickering SJ, Johnson MH, Braude PR, Houliston E (1988) Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Reprod 3:978–989

    CAS  PubMed  Google Scholar 

  • Plant PJ, Fawcett JP, Lin DC, Holdorf AD, Binns K, Kulkarni S, Pawson T (2003) A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5:301–308

    CAS  PubMed  Google Scholar 

  • Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–515

    CAS  PubMed  Google Scholar 

  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis A-K (2008a) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development (cambridge, England) 135:3081–3091

    CAS  Google Scholar 

  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008b) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091

    CAS  PubMed  Google Scholar 

  • Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629

    CAS  PubMed  Google Scholar 

  • Rappolee DA, Basilico C, Patel Y, Werb Z (1994) Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development 120:2259–2269

    CAS  PubMed  Google Scholar 

  • Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Cañon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M (2014) Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 30:410–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossant J, Lis WT (1979) Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev Biol 70:255–261

    CAS  PubMed  Google Scholar 

  • Rossant J, Tam PP (2004) Emerging asymmetry and embryonic patterning in early mouse development. Dev Cell 7:155–164

    CAS  PubMed  Google Scholar 

  • Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713

    CAS  PubMed  Google Scholar 

  • Saiz N, Grabarek JB, Sabherwal N, Papalopulu N, Plusa B (2013) Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst. Development 140:4311–4322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai N, Fujii T, Hashizume T, Sawai K (2013) Effects of downregulating oct-4 transcript by RNA interference on early development of porcine embryos. J Reprod Dev 59:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai N, Takahashi K, Emura N, Fujii T, Hirayama H, Kageyama S, Hashizume T, Sawai K (2016) The Necessity of OCT-4 and CDX2 for Early development and gene expression involved in differentiation of inner cell mass and trophectoderm lineages in bovine embryos. Cell Reprogram 18:309–318

    CAS  PubMed  Google Scholar 

  • Sakurai N, Takahashi K, Emura N, Hashizume T, Sawai K (2017) Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. J Reprod Dev 63:135–142

    CAS  PubMed  Google Scholar 

  • Samarage CR, White MD, Alvarez YD, Fierro-Gonzalez JC, Henon Y, Jesudason EC, Bissiere S, Fouras A, Plachta N (2015) Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell 34:435–447

    CAS  PubMed  Google Scholar 

  • Sasaki H (2015) Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin Cell Dev Biol 47–48:80–87

    PubMed  Google Scholar 

  • Sasaki H (2017) Roles and regulations of Hippo signaling during preimplantation mouse development. Dev Growth Differ 59:12–20

    CAS  PubMed  Google Scholar 

  • Schrode N, Saiz N, Di Talia S, Hadjantonakis AK (2014) GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell 29:454–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331

    CAS  PubMed  Google Scholar 

  • Sheth B, Nowak RL, Anderson R, Kwong WY, Papenbrock T, Fleming TP (2008) Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp Cell Res 314:3356–3368

    CAS  PubMed  Google Scholar 

  • Shirayoshi Y, Okada TS, Takeichi M (1983) The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell 35:631–638

    CAS  PubMed  Google Scholar 

  • Smith LJ (1980) Embryonic axis orientation in the mouse and its correlation with blastocyst relationships to the uterus. Part 1. Relationships between 82 hours and 4 1/4 days. J Embryol Exp Morphol 55:257–277

    CAS  PubMed  Google Scholar 

  • Spindle A (1982) Cell allocation in preimplantation mouse chimeras. J Exp Zool 219:361–367

    CAS  PubMed  Google Scholar 

  • St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, Parlow AF, McGrath J, Xu T (1999) Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21:182–186

    CAS  PubMed  Google Scholar 

  • Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, Agarinis C, Schmelzle T, Bouwmeester T, Schübeler D, Bauer A (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS genetics 11:e1005465

  • Stephenson RO, Rossant J, Tam PP (2012) Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 4

  • Stephenson RO, Yamanaka Y, Rossant J (2010) Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137:3383–3391

    CAS  PubMed  Google Scholar 

  • Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10:1204–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102

    CAS  PubMed  Google Scholar 

  • Sun M, Na Q, Huang L, Song G, Jin F, Li Y, Hou Y, Kang D, Qiao C (2018) YAP Is decreased in preeclampsia and regulates invasion and apoptosis of HTR-8/SVneo. Reproductive Sciences (thousand Oaks, Calif) 25:1382–1393

    CAS  Google Scholar 

  • Surani MA, Barton SC (1984) Spatial distribution of blastomeres is dependent on cell division order and interactions in mouse morulae. Dev Biol 102:335–343

    CAS  PubMed  Google Scholar 

  • Sutherland AE, Speed TP, Calarco PG (1990) Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev Biol 137:13–25

    CAS  PubMed  Google Scholar 

  • Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004) aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Current Biology : CB 14:1425–1435

    CAS  PubMed  Google Scholar 

  • Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987

    CAS  PubMed  Google Scholar 

  • Tarkowski AK, Wroblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18:155–180

    CAS  PubMed  Google Scholar 

  • Telford NA, Watson AJ, Schultz GA (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26:90–100

    CAS  PubMed  Google Scholar 

  • Tsuiko O, Jatsenko T, Parameswaran Grace LK, Kurg A, Vermeesch JR, Lanner F, Altmae S, Salumets A (2019) A speculative outlook on embryonic aneuploidy: Can molecular pathways be involved? Dev Biol 447:3–13

    CAS  PubMed  Google Scholar 

  • Varelas X (2014) The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141:1614–1626

    CAS  PubMed  Google Scholar 

  • Vestweber D, Gossler A, Boller K, Kemler R (1987) Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev Biol 124:451–456

    CAS  PubMed  Google Scholar 

  • Vestweber D, Kemler R (1984) Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues. Exp Cell Res 152:169–178

    CAS  PubMed  Google Scholar 

  • Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallee S (2005) Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol 282:307–319

    CAS  PubMed  Google Scholar 

  • Viswanatha R, Bretscher A, Garbett D (2014) Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochem Soc Trans 42:189–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Dey SK (2006) Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7:185–199

    PubMed  Google Scholar 

  • Wang H, Ding T, Brown N, Yamamoto Y, Prince LS, Reese J, Paria BC (2008) Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse. Dev Biol 318:112–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Biggins JS, Tannan NB, Srinivas S (2014) Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development 141:2279–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  • White MD, Bissiere S, Alvarez YD, Plachta N (2016) Mouse embryo compaction. Curr Top Dev Biol 120:235–258

    CAS  PubMed  Google Scholar 

  • White MD, Plachta N (2015) How adhesion forms the early mammalian embryo. Curr Top Dev Biol 112:1–17

    CAS  PubMed  Google Scholar 

  • White MD, Zenker J, Bissiere S, Plachta N (2018) Instructions for Assembling the Early Mammalian Embryo. Dev Cell 45:667–679

    CAS  PubMed  Google Scholar 

  • Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A (2014) HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS genetics 10:e1004618

  • Winkel GK, Ferguson JE, Takeichi M, Nuccitelli R (1990) Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev Biol 138:1–15

    CAS  PubMed  Google Scholar 

  • Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28:1115–1121

    CAS  PubMed  Google Scholar 

  • Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765

    CAS  PubMed  Google Scholar 

  • Yabuta N, Okada N, Ito A, Hosomi T, Nishihara S, Sasayama Y, Fujimori A, Okuzaki D, Zhao H, Ikawa M, Okabe M, Nojima H (2007) Lats2 is an essential mitotic regulator required for the coordination of cell division. J Biol Chem 282:19259–19271

    CAS  PubMed  Google Scholar 

  • Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836

    CAS  PubMed  Google Scholar 

  • Yamamura S, Goda N, Akizawa H, Kohri N, Balboula AZ, Kobayashi K, Bai H, Takahashi M, Kawahara M (2020) Yes-associated protein 1 translocation through actin cytoskeleton organization in trophectoderm cells. Dev Biol 468:14–25

    CAS  PubMed  Google Scholar 

  • Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T, Iwamatsu A, Shinohara A, Ohno S (2003) Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Current Biology : CB 13:734–743

    CAS  PubMed  Google Scholar 

  • Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724

    CAS  PubMed  Google Scholar 

  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Developmental Dynamics: an Official Publication of the American Association of Anatomists 235:2301–2314

    CAS  Google Scholar 

  • Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaninovic N, Irani M, Meseguer M (2017) Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: is there a relation to implantation and ploidy? Fertil Steril 108:722–729

    PubMed  Google Scholar 

  • Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG, Bissiere S, Biro M, Plachta N (2018) Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173:776-791.e717

    CAS  PubMed  Google Scholar 

  • Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, Giovannini M, Liu P, Anders RA, Pan D (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19:27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24:72–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Marjani SL, Jiang Z (2021) The epigenetics of gametes and early embryos and potential long-range consequences in livestock species-filling in the picture with epigenomic analyses. Front Genet  12:557934

  • Zhu M, Cornwall-Scoones J (2020) Developmental clock and mechanism of de novo polarization of the mouse embryo. 370

  • Zhu M, Leung CY, Shahbazi MN, Zernicka-Goetz M (2017) Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat Commun 8:921

    PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zernicka-Goetz M (2020) Building an apical domain in the early mouse embryo: Lessons, challenges and perspectives. Curr Opin Cell Biol 62:144–149

    CAS  PubMed  Google Scholar 

  • Ziomek CA, Johnson MH (1980) Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:935–942

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Yeditepe University within the scope of Yeditepe University Research Projects and Scientific Activities of Yeditepe University (YAP). Project number YAP-AP-SAB-21019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Yaba.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, E., Bora, G., Onel, T. et al. Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 386, 423–444 (2021). https://doi.org/10.1007/s00441-021-03530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03530-8

Keywords

Navigation