Skip to main content

Advertisement

Log in

Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A thermosensitive quaternary ammonium chloride chitosan/β-glycerophosphate (HACC/β-GP) hydrogel scaffold combined with bone marrow mesenchymal stem cells (BMSCs) transfected with an adenovirus containing the glial cell-derived neurotrophic factor (GDNF) gene (Ad-rGDNF) was applied to spinal cord injury (SCI) repair. The BMSCs from rats were transfected with Ad-rGDNF, resulting in the expression of GDNF mRNA in the BMSCs increasing and their spontaneous differentiation into neural-like cells expressing neural markers such as NF-200 and GFAP. After incubation with HACC/β-GP hydrogel scaffolds for 2 weeks, neuronal differentiation of the BMSCs was confirmed using immunofluorescence (IF), and the expression of GDNF by the BMSCs was detected by Western blot at different time points. MTT assay and scanning electron microscopy confirmed that the HACC scaffold provides a non-cytotoxic microenvironment that supports cell adhesion and growth. Rats with SCI were treated with BMSCs, BMSCs carried by the HACC/β-GP hydrogel (HACC/BMSCs), Ad-rGDNF-BMSCs, or Ad-rGDNF-BMSCs carried by the hydrogel (HACC/GDNF-BMSCs). Animals were sacrificed at 2, 4, and 6 weeks of treatment. IF staining and Western blot were performed to detect the expression of NeuN, NF-200, GFAP, CS56, and Bax in the lesion sites of the injured spinal cord. Upon treatment with HACC/BMSCs, NF200 and GFAP were upregulated but CS56 and Bax were downregulated in the SCI lesion site. Furthermore, transplantation of HACC/GDNF-BMSCs into an SCI rat model significantly improved BBB scores and regeneration of the spinal cord. Thus, HACC/β-GP hydrogel scaffolds show promise for functional recovery in spinal cord injury patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson MA, Burda JE, Ren YL, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baharvand H, Mehrjardi N-Z, Hatami M, Kiani S, Rao M, Haghighi M-M (2016) Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res 1642:426–435

    Article  CAS  Google Scholar 

  • Blecker D, Elashry MI, Heimann M, Wenisch S, Arnhold S (2017) New insights into the neural differentiation potential of canine adipose tissue-derived mesenchymal stem cells. Anat Histol Embryol 46:304–331

    Article  CAS  PubMed  Google Scholar 

  • Brock JH, Graham L, Staufenberg E, Collyer E, Koffler J, Tuszynski MH (2016) Bone marrow stromal cell intraspinal transplants fail to improve motor outcomes in a severe model of spinal cord injury. J Neurotrauma 33(12):1103–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Chedly J, Soares S, Montembault A, Boxberg YV, Veron-Ravaille M, Mouffle C, Benassy MN, Taxi J, David L, Nothias F (2017) Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 138:91–107

    Article  CAS  PubMed  Google Scholar 

  • Deng LX, Ruan YW, Chen C, Frye CC, Xiong WH, Jin XM, Jones K, Sengelaub D, Xu XM (2016) Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 277:103–114

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Donahue SP, Wood JG, English AW (1988) On the role of the 200-kDa neurofilament protein at the developing neuromuscular junction. Dev Biol 130(1):154–166

    Article  CAS  PubMed  Google Scholar 

  • Fan LH, Yang J, Wu HA, Hu ZH, Yi JY, Tong J, Zhu XM (2015) Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int J Biol Macromol 79:830–836

    Article  CAS  PubMed  Google Scholar 

  • Fan WL, Liu P, Wang G, Pu JG, Xue X, Zhao JH (2018) Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats. J Cell Biochem 119(6):4339–4351

    Article  CAS  PubMed  Google Scholar 

  • Gan SC, Xu B, Zhang X, Zhao JH, Rong JH (2019) Chitosan derivative-based double network hydrogels with high strength, high fracture toughness and tunable mechanics. Int J Biol Macromol 137:495–503

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Li ZMY, Huang J, Wang HK, Gu XS, Gu JH (2017) Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. J Tissue Eng Regen Med 11(8):2250–2260

    Article  CAS  PubMed  Google Scholar 

  • Gwak SJ, Koo BH, Yun YM, Yhee JY, Lee HY, Yoon DH, Kim KWMY, Ha Y (2015) Multifunctional nanoparticles for gene delivery and spinal cord injury. J Biomed Mater Res A. 103(11):3474–3482

    Article  CAS  PubMed  Google Scholar 

  • Hsu SH, Kuo WC, Chen YT, Yen CT, Chen YF, Chen KS, Huang WC, Cheng H (2013) New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater 9(5):6606-15

    Article  CAS  PubMed  Google Scholar 

  • Hu JG, Shi LL, Chen YJ, Xie XM, Zhang N, Zhu AY, Jiang ZS, Feng YF, Zhang C, Xi J, Lu HZ (2016) Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord. Exp Neurol 277:190–201

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Yang JD, Feng XM et al (2013) Neuron-like differentiation of mesenchymal stem cells induced by quaternary chitosan thermosensitive hydrogel scaffolds combined with glial cell line-derived neurotrophic factor. Zhongguo Zuzhi Gongcheng Yanjiu 17(42):7420–7426

    CAS  Google Scholar 

  • Huang CJ, Zhao LX, Jun Gu, Nie DK, Chen YN, Zuo H, Huan W, Shi JL, Chen J, Shi W (2016) The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering. Biomed Mater 11(3):035004

    Article  PubMed  CAS  Google Scholar 

  • Hwang K, Jung K, Kim IS, Kim M, Han J, Lim J, Shin JE, Jang JH, Park KI (2019) Glial cell line-derived neurotrophic factor-overexpressing human neural stem/progenitor cells enhance therapeutic efficiency in rat with traumatic spinal cord injury. Exp Neurobiol 28(6):679–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadoya K, Paul Lu, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y, Biane J, Conner J, Zhang S-C, Tuszynski MH (2016) Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 22(5):479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, , YZ (2010) A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31(14):4157–4166

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Jin JJ, Lee SJ, Seo TB, Ji ES (2018) Treadmill exercise with bone marrow stromal cells transplantation facilitates neuroprotective effect through BDNF-ERK1/2 pathway in spinal cord injury rats. J Exerc Rehabil 14(3):335–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo YC, Yeh CF (2011) Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Colloids Surf B Biointerfaces 82(2):624–631

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Yeh CF, Yang JT (2009) Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Biomaterials 30(34):6604–6613

    Article  CAS  PubMed  Google Scholar 

  • Li GF, Wang JC, Yang JD et al (2015) Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles. Appl Biochem Biotechnol 175(7):3244–3257

    Article  CAS  PubMed  Google Scholar 

  • Li GF, Wang JC, Feng XM, Liu ZD, Jiang CY, Yang JD (2015) Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles. Appl Biochem Biotechnol 175(7):3244–3257

    Article  CAS  PubMed  Google Scholar 

  • Li XS, Yuan ZW, Wei XW, Li H, Zhao GF, Miao JN, Wu D, Liu B, Cao SY, An D, Ma W, Henan Zhang HN, Wang WL, Wang QS, Gu H (2016) Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med 27(4):77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Yu ZW, Men YZ, Chen XW, Wang BX (2018) Laminin-chitosan-PLGA conduit co-transplanted with schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Exp Ther Med 16(2):1250–1258

    PubMed  PubMed Central  Google Scholar 

  • Libro R, Bramanti P, Mazzon E (2017) The Combined Strategy of Mesenchymal Stem Cells and Tissue-Engineered Scaffolds for Spinal Cord Injury Regeneration. Exp Ther Med 14(4):3355-3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WW, Li M, Li Y, Sun XL, Li X, Yang F, Huang YJ, Wang XD (2014) Bone marrow stromal cells promote neurite outgrowth of spinal motor neurons by means of neurotrophic factors in vitro. Neurol Sci 35(3):449–457

    Article  PubMed  Google Scholar 

  • Liu T, Li J, Shao ZW, Ma KG, Zhang ZC, Wang BC, Zhang YN (2018) Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med Eng Phys 56:9–15

    Article  PubMed  Google Scholar 

  • Lu Y, Gao H, Zhang M, Chen B, Yang H (2017) Glial Cell line-derived neurotrophic factor-transfected placenta-derived versus bone marrow-derived mesenchymal cells for treating spinal cord injury. Med Sci Monit 23:1800–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maji K, Dasgupta S, Pramanik K, Bissoyi A (2018) Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Mater Sci Eng C Mater Biol Appl 86:83–94

    Article  CAS  PubMed  Google Scholar 

  • McLendonl RE, Bigner DD (1994) lmmunohistochemistry of the glial fibrillary acidic protein: basic and applied considerations. Brain Pathol 4(3):221–228

    Article  Google Scholar 

  • Meng QY, Man ZT, Dai LH, Huang HJ, Zhang X, Hu XQ, Shao ZX, Zhu JX, Zhang JY, Fu X, Duan XN, (2015) A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration.Sci Rep 5:17802

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, Arita K, Nishimura M, Kato Y, Kurisu K (2008) Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett 430(2):109–114

    Article  CAS  PubMed  Google Scholar 

  • Raynald, Li YB, Yu H, Huang H, Guo MY, Hua RR, Jiang FJ, Zhang KH, Li HL, Wang F,  Li LS, Cui FZ, Yihua An YH (2016) The Hetero-Transplantation of Human Bone Marrow Stromal Cells Carried by Hydrogel Unexpectedly Demonstrates a Significant Role in the Functional Recovery in the Injured Spinal Cord of Rats. Brain Res 1634:21-33

    Article  CAS  PubMed  Google Scholar 

  • Sandner B, Ciatipis M, Motsch M, Soljanik I, Weidner N, Blesch A (2016) Limited functional effects of subacute syngeneic bone marrow stromal cell transplantation after rat spinal cord contusion injury. Cell Transplant 25(1):125–139

    Article  PubMed  Google Scholar 

  • Shahrezaie M, Mansour RN, Nazari B, Hassannia H, Hosseini F, Mahboudi H, Eftekhary M, Kehtari M, Veshkini A, Vasmehjani AA, Enderami SE (2017) Improved stem cell therapy of spinal cord injury using GDNF-overexpressed bone marrow stem cells in a rat model. Biologicals 50:73–80

    Article  CAS  PubMed  Google Scholar 

  • Su WT, Shih YA, Ko CS (2016) Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells. J Tissue Eng Regen Med 10(6):507–517

    Article  CAS  PubMed  Google Scholar 

  • Tan GX, Yu SH, Li JY, Pan WS (2017) Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol 103:941–947

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Xie LL, Sai MG, Xu NN, Ding DR (2015) Preparation and antibacterial activity of quaternized chitosan with iodine. Mater Sci Eng C Mater Biol Appl 48:1–4

    Article  PubMed  CAS  Google Scholar 

  • Walker MJ, Xu XM (2018) History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair. Brain Sci 13;8(6):109

  • Wang CH, Liu WS, Sun JF, Hou GG, Chen Q, Cong W, Zhao F (2016) Non-toxic O-quaternized chitosan materials with better water solubility and antimicrobial function. Int J Biol Macromol 84:418–427

    Article  CAS  PubMed  Google Scholar 

  • Wang GD, Liu YX, Wang X, Zhang YL, Zhang YD, Xue F (2017) The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells. Oncotarget 8(7):11629–11640

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GD, Liu TX, Wang X, Zhang YL, Ya-Dong Zhang YD, Xue F (2017) The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells. Oncotarget 8(7):11629–11640

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Xiao ZF, Zhao YN, Wang B, Li X, Li J, Dai JW (2018) Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 12(2):e1154–e1163

    Article  CAS  PubMed  Google Scholar 

  • Yang JD, Huang C, Wang JC, Feng XM, Li YN, Xiao HX (2014) The isolation and cultivation of bone marrow stem cells and evaluation of differences for neural-like cells differentiation under the induction with neurotrophic factors. Cytotechnology 66:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ao HY, Wang YG, Lin WT, Yang SB, Zhang SH, Yu ZF, Tang TG (2016) Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Res 4:16027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang SB, Wang YG, Yu ZF, Ao HY, Zhang HB, Qin L, Guillaume Q, Eglin D, Geoff Richards R, Tang TT (2016) Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater 46:112–128

    Article  CAS  PubMed  Google Scholar 

  • Yang EZ, Zhang GW, Xu JG, Chen S, Wang H, Cao LL, Liang B, Xiao-Feng Lian XF (2017) Multichannel polymer scaffold seeded with activated schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol Sin 38(5):623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Chu LY, Yang SB, Zhang HB, Qin L, Guillaume O, Eglin D, Geoff Richards R, Tang TT (2018) Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 79:265–275

    Article  CAS  PubMed  Google Scholar 

  • Yuan XB, Jin Y, Haas C, Yao L, Hayakawa K, Wang Y, Wang C, Fischer I (2016) Guiding migration of transplanted glial progenitor cells in the injured spinal cord. Sci Rep 6:22576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue W, Yan F, Zhang YL, Liu SL, Hou SP, Mao GC, Liu N, Ji Y (2016) Differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells in vitro and co-cultured with biological scaffold as transplantation carrier. Med Sci Monit 26(22):1766–1772

    Article  Google Scholar 

  • Zhang JL, Lu XH, Feng GJ, Gu ZF, Sun YY, Bao GF, Xu GF, Lu YZ, Chen JJ, Xu LF, Xingmei Feng XM, Cui ZM (2016) Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res 366(1):129–142

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Feng GJ, Zhang JL, Xing J, Dan Huang D, Lian M, Zhang W, Wu WL, Hu YZ, Lu XH, Feng XM (2020) Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int J Neurosci 5:1–9

    CAS  Google Scholar 

  • Zhilai Z, Biling M, Sujun Q, Chao D, Benchao S, Shuai H, Shun Y, Hui Z (2016) Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res.1642:426-435.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China, No. 81071466; the Science and Education Leading Talents Program for Invigorating Health of Yangzhou during 13th Five-Year Plan Period, No. LJRC20182; the Science and Technology Program of Nantong City, No. GJZ16044; and the Science and Technology Program of Rugao City, No. SRG(15) 3015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Yang.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This research does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Liu, Y., Ding, J. et al. Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res 385, 65–85 (2021). https://doi.org/10.1007/s00441-021-03430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03430-x

Keywords

Navigation