Skip to main content

Advertisement

Log in

Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe S, Yamaguchi S, Amagasa T (2007) Multilineage cells from apical pulp of human tooth with immature apex. Oral Science International 4:45–58

    Article  Google Scholar 

  • Abe S, Yamaguchi S, Watanabe A, Hamada K, Amagasa T (2008) Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys Res Commun 371:90–93

    Article  CAS  PubMed  Google Scholar 

  • Adameyko I, Lallemend F (2010) Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 67:3037–3055

    Article  CAS  PubMed  Google Scholar 

  • Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P (2009) Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139:366–379

    Article  CAS  PubMed  Google Scholar 

  • Adameyko I, Lallemend F, Furlan A, Zinin N, Aranda S, Kitambi SS, Blanchart A, Favaro R, Nicolis S, Lubke M, Muller T, Birchmeier C, Suter U, Zaitoun I, Takahashi Y, Ernfors P (2012) Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139:397–410

    Article  PubMed  PubMed Central  Google Scholar 

  • An Z, Akily B, Sabalic M, Zong G, Chai Y, Sharpe PT (2018a) Regulation of mesenchymal stem to transit-amplifying cell transition in the continuously growing mouse incisor. Cell Rep 23:3102–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT (2018b) A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun 9:1–9

    Article  CAS  Google Scholar 

  • Andrew JG, Hoyland JA, Freemont AJ, Marsh DR (1995) Platelet-derived growth factor expression in normally healing human fractures. Bone 16:455–460

    CAS  PubMed  Google Scholar 

  • Antoniades HN, Scher CD, Stiles CD (1979) Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A 76:1809–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babb R, Chandrasekaran D, Carvalho Moreno Neves V, Sharpe PT (2017) Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/beta-catenin signaling in response to tooth damage. Sci Rep 7:3102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae CH, Kim TH, Ko SO, Lee JC, Yang X, Cho ES (2015) Wntless regulates dentin apposition and root elongation in the mandibular molar. J Dent Res 94:439–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae JM, Clarke JC, Rashid H, Adhami MD, McCullough K, Scott JS, Chen H, Sinha KM, de Crombrugghe B, Javed A (2018) Specificity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts. J Bone Miner Res 33:1126–1140

    Article  CAS  PubMed  Google Scholar 

  • Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R, Sommer L (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16:314–322

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M (1993) Segregation of cell lineage in the neural crest. Curr Opin Genet Dev 3:641–647

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Zhang W, Chen W (2016) PDGFRbeta(+)/c-kit(+) pulp cells are odontoblastic progenitors capable of producing dentin-like structure in vitro and in vivo. BMC Oral Health 16:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Z, Zhang H, Zhou X, Han X, Ren Y, Gao T, Xiao Y, De Crombrugghe B, Somerman MJ, Feng JQ (2012) Genetic evidence for the vital function of Osterix in cementogenesis. J Bone Miner Res 27:1080–1092

    Article  CAS  PubMed  Google Scholar 

  • Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nor JE (2010) Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res 89:603–608

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Ito Y, Han J (2003) TGF-β signaling and its functional significance in regulating the fate of cranial neural crest cells. Critical Rev Oral Biol Med 14:78–88

    Article  CAS  Google Scholar 

  • Chan-Ling T, Hughes S (2005) NG2 can be used to identify arteries versus veins enabling the characterization of the different functional roles of arterioles and venules during microvascular network growth and remodeling. Microcirculation (New York, NY: 1994) 12:539

    Article  Google Scholar 

  • Chen S, Gluhak-Heinrich J, Wang Y, Wu Y, Chuang H, Chen L, Yuan G, Dong J, Gay I, MacDougall M (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88:904–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Ishan M, Yang J, Kishigami S, Fukuda T, Scott G, Ray MK, Sun C, Chen SY, Komatsu Y, Mishina Y, Liu HX (2017) Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos. Genesis 55

  • Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S (2016) Nanomaterials for tissue engineering in dentistry. Nanomaterials (Basel) 6

  • Collignon AM, Castillo-Dali G, Gomez E, Guilbert T, Lesieur J, Nicoletti A, Acuna-Mendoza S, Letourneur D, Chaussain C, Rochefort GY, Poliard A (2019) Mouse Wnt1-CRE-Rosa(tomato) dental pulp stem cells directly contribute to the Calvarial bone regeneration process. Stem Cells 37:701–711

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–969

    Article  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Chen CW, Corselli M, Andriolo G, Lazzari L, Péault B (2009) Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 1176:118–123

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Corselli M, Chen CW, Peault B (2011) Multilineage stem cells in the adult: a perivascular legacy? Organogenesis 7:101–104

    Article  PubMed  PubMed Central  Google Scholar 

  • d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  • Dong R, Yao R, Du J, Wang S, Fan Z (2013) Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Exp Cell Res 319:2874–2882

    Article  CAS  PubMed  Google Scholar 

  • Echelard Y, Vassileva G, McMahon AP (1994) Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120:2213–2224

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F, Yang X (2011) Genetic mouse models for bone studies—strengths and limitations. Bone 49:1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farges JC, Keller JF, Carrouel F, Durand SH, Romeas A, Bleicher F, Lebecque S, Staquet MJ (2009) Odontoblasts in the dental pulp immune response. J Exp Zool B Mol Dev Evol 312:425–436

    Article  CAS  Google Scholar 

  • Farges J-C, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ, Cooper PR (2015) Dental pulp defence and repair mechanisms in dental caries. Mediat Inflamm 2015

  • Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 108:6503–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Jing J, Li J, Zhao H, Punj V, Zhang T, Xu J, Chai Y (2017) BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development 144:2560–2569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Matsubara K, Sakai K, Ito M, Ohno K, Ueda M, Yamamoto A (2015) Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 1613:59–72

    Article  CAS  PubMed  Google Scholar 

  • GEORGE A, Eapen A (2015) Dentin phosphophoryn in the matrix activates AKT and mTOR signaling pathway to promote preodontoblast survival and differentiation. Front Physiol 6:221

    PubMed  PubMed Central  Google Scholar 

  • Glass DA II, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  CAS  PubMed  Google Scholar 

  • Hari L, Miescher I, Shakhova O, Suter U, Chin L, Taketo M, Richardson WD, Kessaris N, Sommer L (2012) Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. Development 139:2107–2117

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Kim H, Tsuboi N, Yamamoto A, Akiyama S, Shi Y, Katsuno T, Kosugi T, Ueda M, Matsuo S, Maruyama S (2015) Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 10:e0140121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, Politis C, Lambrichts I, Bronckaers A (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353:65–78

    Article  CAS  PubMed  Google Scholar 

  • Hu YS, Zhou H, Kartsogiannis V, Eisman JA, Martin TJ, Ng KW (1998) Expression of rat homeobox gene, rHOX, in developing and adult tissues in mice and regulation of its mRNA expression in osteoblasts by bone morphogenetic protein 2 and parathyroid hormone-related protein. Mol Endocrinol 12:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34:645–651

    Article  PubMed  PubMed Central  Google Scholar 

  • Janebodin K, Horst OV, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, Reyes M (2011) Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice PloS one 6:

  • Jho E-H, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F (2002) Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Fan W, Deng Q, He H, Huang F (2019) Stem cells from the apical papilla: a promising source for stem cell-based therapy. Biomed Res Int 2019:6104738

    PubMed  PubMed Central  Google Scholar 

  • Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513:551–554

    Article  CAS  PubMed  Google Scholar 

  • Kim J-K, Baker J, Nor JE, Hill EE (2011) mTor plays an important role in odontoblast differentiation. J Endod 37:1081–1085

    Article  PubMed  Google Scholar 

  • Kim BC, Jun SM, Kim SY, Kwon YD, Choe SC, Kim EC, Lee JH, Kim J, Suh JF, Hwang YS (2017) Engineering three dimensional micro nerve tissue using postnatal stem cells from human dental apical papilla. Biotechnol Bioeng 114:903–914

    Article  CAS  PubMed  Google Scholar 

  • Kolar MK, Itte VN, Kingham PJ, Novikov LN, Wiberg M, Kelk P (2017) The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep 7:12605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S, Yamazaki H (2012) Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One 7:e46436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67:501–506

    Article  PubMed  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar V, Rattan V, Jha V, Pal A, Bhattacharyya S (2017) Molecular spectrum of secretome regulates the relative hepatogenic potential of mesenchymal stem cells from bone marrow and dental tissue. Sci Rep 7:15015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Liu M, Zhang S, Wan H, Zhang Q, Yue R, Yan X, Wang X, Wang Z, Sun Y (2018) Essential role of IFT140 in promoting dentinogenesis. J Dent Res 97:423–431

    Article  CAS  PubMed  Google Scholar 

  • Lin C-S, Xin Z-C, Dai J, Lue TF (2013) Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol 28:1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Feng J, Li J, Zhao H, Ho T-V, Chai Y (2015) An Nfic-hedgehog signaling cascade regulates tooth root development. Development 142:3374–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Lohi M, Tucker AS, Sharpe PT (2010) Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre-and postnatal tooth development. Developmental dynamics: an official publication of the American Association of Anatomists 239:160–167

    CAS  Google Scholar 

  • Lu M-F, Cheng H-T, Kern MJ, Potter SS, Tran B, Diekwisch T, Martin JF (1999) Prx-1 functions cooperatively with another paired-related homeobox gene, prx-2, to maintain cell fates within the craniofacial mesenchyme. Development 126:495–504

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Beck GR Jr, Gilbert LC, Camalier CE, Bateman NW, Hood BL, Conrads TP, Kern MJ, You S, Chen H (2011) Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. J Bone Miner Res 26:209–219

    Article  CAS  PubMed  Google Scholar 

  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G, Kukita T, Nonaka K, Shi S, Yamaza T (2012) Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 7:e51777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JF, Bradley A, Olson EN (1995) The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev 9:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Matsushita Y, Nagata M, Kozloff KM, Welch JD, Mizuhashi K, Tokavanich N, Hallett SA, Link DC, Nagasawa T, Ono W (2020) A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun 11:1–17

    Article  CAS  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595

    Article  CAS  PubMed  Google Scholar 

  • Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease. Behav Brain Res 293:189–197

    Article  CAS  PubMed  Google Scholar 

  • Mitchell J, Hicklin D, Doughty P, Hicklin J, Dickert J Jr, Tolbert S, Peterkova R, Kern M (2006) The Prx1 homeobox gene is critical for molar tooth morphogenesis. J Dent Res 85:888–893

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  CAS  PubMed  Google Scholar 

  • Murfee WL, Skalak TC, Peirce SM (2005) Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation 12:151–160

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Ono N, Ono W (2019) Mesenchymal progenitor regulation of tooth eruption: a view from PTHrP. J Dent Res 0022034519882692

  • Nanci A (2017) Ten Cate's oral histology-E-book: development, structure, and function. Elsevier Health Sciences

  • Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS, Tanavde V (2008) PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112:295–307

    Article  CAS  PubMed  Google Scholar 

  • Nicola FDC, Marques MR, Odorcyk F, Arcego DM, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N, Dalmaz C, Pranke P, Netto CA (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 1663:95–105

    Article  CAS  PubMed  Google Scholar 

  • Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubamea B, Schmitt A, Vital S, Poliard A, Helary C, Rochefort GY, Chaussain C, Gorin C (2019) Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth Factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects. Stem Cells Transl Med 8:844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka S, Oka K, Xu X, Sasaki T, Bringas P Jr, Chai Y (2007) Cell autonomous requirement for TGF-beta signaling during odontoblast differentiation and dentin matrix formation. Mech Dev 124:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono W, Sakagami N, Nishimori S, Ono N, Kronenberg HM (2016) Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat Commun 7:1–16

    Google Scholar 

  • Palma PJ, Ramos JC, Martins JB, Diogenes A, Figueiredo MH, Ferreira P, Viegas C, Santos JM (2017) Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis. J Endod 43:1279–1287

    Article  PubMed  Google Scholar 

  • Palma PJ, Martins J, Diogo P, Sequeira D, Ramos JC, Diogenes A, Santos JM (2019) Does apical papilla survive and develop in apical periodontitis presence after regenerative endodontic procedures? Appl Sci-Basel 9

  • Pang YW, Feng J, Daltoe F, Fatscher R, Gentleman E, Gentleman MM, Sharpe PT (2016) Perivascular stem cells at the tip of mouse incisors regulate tissue regeneration. J Bone Miner Res 31:514–523

    Article  CAS  PubMed  Google Scholar 

  • Patil R, Kumar BM, Lee WJ, Jeon RH, Jang SJ, Lee YM, Park BW, Byun JH, Ahn CS, Kim JW, Rho GJ (2014) Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res 320:92–107

    Article  CAS  PubMed  Google Scholar 

  • Peterson RE, Hoffman S, Kern MJ (2005) Opposing roles of two isoforms of the Prx1 homeobox gene in chondrogenesis. Developmental dynamics: an official publication of the American Association of Anatomists 233:811–821

    Article  CAS  Google Scholar 

  • Pierce GF, Mustoe TA, Senior RM, Reed J, Griffin GL, Thomason A, Deuel TF (1988) In vivo incisional wound healing augmented by platelet-derived growth factor and recombinant c-sis gene homodimeric proteins. J Exp Med 167:974–987

    Article  CAS  PubMed  Google Scholar 

  • Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    Article  PubMed  Google Scholar 

  • Rakian A, Yang W-C, Gluhak-Heinrich J, Cui Y, Harris MA, Villarreal D, Feng JQ, MacDougall M, Harris SE (2013) Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. International journal of oral science 5:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, Santos CF, Nor JE (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89:791–796

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Sharpe PT (2016) Dental mesenchymal stem cells. Development 143:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Mao J, Liu Y (2020) Concise review: pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications. Stem Cells Transl Med

  • Sloan AJ, Smith AJ (2007) Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Dis 13:151–157

    Article  CAS  PubMed  Google Scholar 

  • Sloan AJ, Waddington RJ (2009) Dental pulp stem cells: what, where, how? Int J Paediatr Dent 19:61–70

    Article  PubMed  Google Scholar 

  • Smith AJ, Lesot H (2001) Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med 12:425–437

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H (1995) Reactionary dentinogenesis. Int J Dev Biol 39:273–280

    CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR (2008) Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17:1175–1184

    Article  PubMed  Google Scholar 

  • Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  CAS  PubMed  Google Scholar 

  • Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H (2012) Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 21:1794–1802

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Ono N, Ono W (2017) The fate of Osterix-expressing mesenchymal cells in dental root formation and maintenance. Orthodontics & craniofacial research 20:39–43

    Article  Google Scholar 

  • Takahashi A, Nagata M, Gupta A, Matsushita Y, Yamaguchi T, Mizuhashi K, Maki K, Ruellas AC, Cevidanes LS, Kronenberg HM (2019) Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci 116:575–580

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Ding G (2011) Swine dental pulp stem cells inhibit T-cell proliferation. Transplant Proc 43:3955–3959

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Lin H, Sun Z, Pei F, Zhang J, Chen S, Liu H, Chen Z (2019) Klf4 promotes Dentinogenesis and Odontoblastic differentiation via modulation of TGF-beta signaling pathway and interaction with histone acetylation. J Bone Miner Res 34:1502–1516

    Article  CAS  PubMed  Google Scholar 

  • Tatullo M, Marrelli M, Shakesheff KM, White LJ (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9:1205–1216

    Article  PubMed  Google Scholar 

  • ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F (1998) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125:3831–3842

    Article  PubMed  Google Scholar 

  • Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116:1647–1648

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Ariza-McNaughton L, Krumlauf R (2002) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295:1288–1291

    Article  CAS  PubMed  Google Scholar 

  • Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT (1999) Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 126:51–61

    Article  CAS  PubMed  Google Scholar 

  • Vidovic I, Banerjee A, Fatahi R, Matthews BG, Dyment NA, Kalajzic I, Mina M (2017) alphaSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J Dent Res 96:323–330

    Article  CAS  PubMed  Google Scholar 

  • Vidovic-Zdrilic I, Vining KH, Vijaykumar A, Kalajzic I, Mooney DJ, Mina M (2018) FGF2 enhances odontoblast differentiation by alphaSMA(+) progenitors in vivo. J Dent Res 97:1170–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidovic-Zdrilic I, Vijaykumar A, Mina M (2019) Activation of alphaSMA expressing perivascular cells during reactionary dentinogenesis. Int Endod J 52:68–76

    Article  CAS  PubMed  Google Scholar 

  • Walker JV, Zhuang H, Singer D, Illsley CS, Kok WL, Sivaraj KK, Gao Y, Bolton C, Liu Y, Zhao M (2019) Transit amplifying cells coordinate mouse incisor mesenchymal stem cell activation. Nat Commun 10:1–18

    Article  CAS  Google Scholar 

  • Wang SK, Komatsu Y, Mishina Y (2011) Potential contribution of neural crest cells to dental enamel formation. Biochem Biophys Res Commun 415:114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Sha XJ, Li GH, Yang FS, Ji K, Wen LY, Liu SY, Chen L, Ding Y, Xuan K (2012) Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 57:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cox MK, Coricor G, MacDougall M, Serra R (2013) Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol 382:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lv C, Gu Y, Li Q, Xie L, Zhang H, Miao D, Sun W (2018) Overexpressed Sirt1 in MSCs promotes dentin formation in Bmi1-deficient mice. J Dent Res 97:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hu Z, Wu J, Mei Y, Zhang Q, Zhang H, Miao D, Sun W (2019) Sirt1 promotes osteogenic differentiation and increases alveolar bone mass via Bmi1 activation in mice. J Bone Miner Res 34:1169–1181

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DG, Bailes JA, McMahon AP (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50:79–88

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Dai Q, Liu X, Wang J (2019) Conditional knockout of raptor/mTORC1 results in dentin malformation. Front Physiol 10:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Xuan K, Li B, Guo H, Sun W, Kou X, He X, Zhang Y, Sun J, Liu A, Liao L, Liu S, Liu W, Hu C, Shi S, Jin Y (2018) Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med:10

  • Yamada Y, Nakamura-Yamada S, Kusano K, Baba S (2019) Clinical potential and current Progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review. Int J Mol Sci 20

  • Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M, Osuzu F, Kuratani S, Yamamura K (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203

    Article  CAS  PubMed  Google Scholar 

  • Yamaza T, Alatas FS, Yuniartha R, Yamaza H, Fujiyoshi JK, Yanagi Y, Yoshimaru K, Hayashida M, Matsuura T, Aijima R, Ihara K, Ohga S, Shi S, Nonaka K, Taguchi T (2015) In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 6:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokose S, Kadokura H, Tajima N, Hasegawa A, Sakagami H, Fujieda K, Katayama T (2004) Platelet-derived growth factor exerts disparate effects on odontoblast differentiation depending on the dimers in rat dental pulp cells. Cell Tissue Res 315:375–384

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y (2007) Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99:465–474

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, Van Kuppevelt TH, Daamen WF, Van Damme PA, Bian Z, Jansen JA (2008) In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2:117–125

    Article  CAS  PubMed  Google Scholar 

  • Zhang QZ, Nguyen AL, Yu WH, Le AD (2012) Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res 91:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang L, Jin Y, Shi S (2012) Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res 91:948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y (2014) Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14:160–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Institutes of Health grants (DE027421 to W.O., DE026666 to N.O.,) and American Association of Orthodontists Foundation Postdoctoral Research Award (to W.O.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanida Ono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, M., Ono, N. & Ono, W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 383, 603–616 (2021). https://doi.org/10.1007/s00441-020-03271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03271-0

Keywords

Navigation