Skip to main content

Advertisement

Log in

Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Spontaneous animal models of Alzheimer’s disease (AD) offer the potential to bridge the translational gulf between promising rodent studies and failed human clinical trials. In this review, the relationship between cell biology, neuropathology, clinical phenotype and biomarker progression in human AD is summarized. Genetically altered animals have provided key insights into the cell biology of AD and, together with emerging stem cell systems, remain the most effective means to disentangle the entwined mechanisms that underlie AD. Translating therapeutic success from these models of familial AD to late onset human AD has been challenging. Spontaneous models of AD do not harbor AD-associated mutations and could potentially be used to demonstrate greater generalizability of new therapies to late onset AD. The value of such models has been advanced primarily on the basis of similar amyloid (and far less frequent, tangle) neuropathology. While these models are promising, this alone is insufficient for use of these models to assess efficacy of potential therapies. The correlation between progression of neuropathology and cognitive phenotype and the association of these with biomarker progression in these models is discussed, with an emphasis on the dog and non-human primates. Currently, interventional studies using these models are hampered by use of a variety of outcomes that are not easily comparable with those used in human trials and do not permit longitudinal assessment. Additional studies aimed at closing the gap between neuropathology and usable outcome measures would support more accurate subject selection, assessment of target engagement and evaluation of therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:270–279

    PubMed  PubMed Central  Google Scholar 

  • Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat 8:429–431

    CAS  PubMed  Google Scholar 

  • Andrews AM, Cheng X, Altieri SC, Yang H (2018) Bad behavior: improving reproducibility in behavior testing. ACS Chem Neurosci 9:1904–1906

    CAS  PubMed  Google Scholar 

  • Balducci C, Forloni G (2011) APP transgenic mice: their use and limitations. NeuroMolecular Med 13:117–137

    CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science (New York, NY) 217:408–414

    CAS  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behl C, Ziegler C (2017) Beyond amyloid - widening the view on Alzheimer's disease. J Neurochem 143:394–395

    CAS  PubMed  Google Scholar 

  • Bell KF, Ducatenzeiler A, Ribeiro-da-Silva A, Duff K, Bennett DA, Cuello AC (2006) The amyloid pathology progresses in a neurotransmitter-specific manner. Neurobiol Aging 27:1644–1657

    CAS  PubMed  Google Scholar 

  • Bons N, Mestre N, Petter A (1992) Senile plaques and neurofibrillary changes in the brain of an aged lemurian primate, Microcebus murinus. Neurobiol Aging 13:99–105

    CAS  PubMed  Google Scholar 

  • Bons N, Rieger F, Prudhomme D, Fisher A, Krause KH (2006) Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease? Genes Brain Behav 5:120–130

    CAS  PubMed  Google Scholar 

  • Borghys H, Van Broeck B, Dhuyvetter D, Jacobs T, de Waepenaert K, Erkens T, Brooks M, Thevarkunnel S, Araujo JA (2017) Young to middle-aged dogs with high amyloid-beta levels in cerebrospinal fluid are impaired on learning in standard cognition tests. J Alzheimers Dis 56:763–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borras D, Ferrer I, Pumarola M (1999) Age-related changes in the brain of the dog. Vet Pathol 36:202–211

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    PubMed  PubMed Central  Google Scholar 

  • Brenowitz WD, Keene CD, Hawes SE, Hubbard RA, Longstreth WT Jr, Woltjer RL, Crane PK, Larson EB, Kukull WA (2017) Alzheimer's disease neuropathologic change, Lewy body disease, and vascular brain injury in clinic- and community-based samples. Neurobiol Aging 53:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3:89ra57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra A, Valkimadi PE, Pagano G, Cousins O, Dervenoulas G, Politis M (2019) Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer's disease and mild cognitive impairment. Hum Brain Mapp

  • Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J et al (1991) Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846

    CAS  PubMed  Google Scholar 

  • Cheng Y, Brown J, Judd TC, Lopez P, Qian W, Powers TS, Chen JJ, Bartberger MD, Chen K, Dunn RT 2nd, Epstein O, Fremeau RT Jr, Harried S, Hickman D, Hitchcock SA, Luo Y, Minatti AE, Patel VF, Vargas HM, Wahl RC, Weiss MM, Wen PH, White RD, Whittington DA, Zheng XM, Wood S (2015) An orally available BACE1 inhibitor that affords robust CNS Abeta reduction without cardiovascular liabilities. ACS Med Chem Lett 6:210–215

    CAS  PubMed  Google Scholar 

  • Colle MA, Hauw JJ, Crespeau F, Uchihara T, Akiyama H, Checler F, Pageat P, Duykaerts C (2000) Vascular and parenchymal Abeta deposition in the aging dog: correlation with behavior. Neurobiol Aging 21:695–704

    CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science (New York, NY) 261:921–923

    CAS  Google Scholar 

  • Cramer PE, Gentzel RC, Tanis KQ, Vardigan J, Wang Y, Connolly B, Manfre P, Lodge K, Renger JJ, Zerbinatti C, Uslaner JM (2018) Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiol Aging 64:92–106

    CAS  PubMed  Google Scholar 

  • Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, Arnold SE, Attems J, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Gearing M, Grinberg LT, Hof PR, Hyman BT, Jellinger K, Jicha GA, Kovacs GG, Knopman DS, Kofler J, Kukull WA, Mackenzie IR, Masliah E, McKee A, Montine TJ, Murray ME, Neltner JH, Santa-Maria I, Seeley WW, Serrano-Pozo A, Shelanski ML, Stein T, Takao M, Thal DR, Toledo JB, Troncoso JC, Vonsattel JP, White CL 3rd, Wisniewski T, Woltjer RL, Yamada M, Nelson PT (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta neuropathologica 128:755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts HS, Muggleton NG, Bowditch AP, Pearce PC, Nutt DJ, Scott EA (1999) Home cage presentation of complex discrimination tasks to marmosets and rhesus monkeys. Lab Anim 33:207–214

    CAS  PubMed  Google Scholar 

  • Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW (1996) The canine as an animal model of human aging and dementia. Neurobiol Aging 17:259–268

    CAS  PubMed  Google Scholar 

  • Cummings J, Reiber C, Kumar P (2018) The price of progress: funding and financing Alzheimer's disease drug development. Alzheimers Dement (N Y) 4:330–343

    Google Scholar 

  • Darusman HS, Sajuthi D, Kalliokoski O, Jacobsen KR, Call J, Schapiro SJ, Gjedde A, Abelson KS, Hau J (2013) Correlations between serum levels of beta amyloid, cerebrospinal levels of tau and phospho tau, and delayed response tasks in young and aged cynomolgus monkeys (Macaca fascicularis). J Med Primatol 42:137–146

    CAS  PubMed  Google Scholar 

  • Darusman HS, Pandelaki J, Mulyadi R, Sajuthi D, Putri IA, Kalliokoski OH, Call J, Abelson KS, Schapiro SJ, Gjedde A, Hau J (2014) Poor memory performance in aged cynomolgus monkeys with hippocampal atrophy, depletion of amyloid beta 1-42 and accumulation of tau proteins in cerebrospinal fluid. In Vivo 28:173–184

    CAS  PubMed  Google Scholar 

  • Delabar JM, Goldgaber D, Lamour Y, Nicole A, Huret JL, de Grouchy J, Brown P, Gajdusek DC, Sinet PM (1987) Beta amyloid gene duplication in Alzheimer's disease and karyotypically normal down syndrome. Science (New York, NY) 235:1390–1392

    CAS  Google Scholar 

  • Dhenain M, Michot JL, Privat N, Picq JL, Boller F, Duyckaerts C, Volk A (2000) MRI description of cerebral atrophy in mouse lemur primates. Neurobiol Aging 21(1):81–88

  • Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic Alzheimer's disease. Curr Alzheimer Res 13:952–963

    CAS  PubMed  Google Scholar 

  • Drummond E, Wisniewski T (2017) Alzheimer's disease: experimental models and reality. Acta Neuropathol 133:155–175

    CAS  PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL (2014) Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    PubMed  Google Scholar 

  • Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Raghanti MA (2017) Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiol Aging 59:107–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elfenbein HA, Rosen RF, Stephens SL, Switzer RC, Smith Y, Pare J, Mehta PD, Warzok R, Walker LC (2007) Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167

    CAS  PubMed  Google Scholar 

  • Ellison DLS (2013) Neuropathology, a reference text of CNS pathology, 3rd edn. Elsevier Mosby, Italy

    Google Scholar 

  • Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, Holtzman DM (2009) Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 65:176–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fast R, Rodell A, Gjedde A, Mouridsen K, Alstrup AK, Bjarkam CR, West MJ, Berendt M, Moller A (2013a) PiB fails to map amyloid deposits in cerebral cortex of aged dogs with canine cognitive dysfunction. Front Aging Neurosci 5:99

    PubMed  PubMed Central  Google Scholar 

  • Fast R, Schutt T, Toft N, Moller A, Berendt M (2013b) An observational study with long-term follow-up of canine cognitive dysfunction: clinical characteristics, survival, and risk factors. J Vet Intern Med 27:822–829

    CAS  PubMed  Google Scholar 

  • Fiock KL, Smith JD, Crary JF, Hefti MM (2019) Beta-amyloid and tau pathology in the aging feline brain. J Comp Neurol

  • Franklin EE, Perrin RJ, Vincent B, Baxter M, Morris JC, Cairns NJ (2015) Brain collection, standardized neuropathologic assessment, and comorbidity in Alzheimer's Disease Neuroimaging Initiative 2 participants. Alzheimers Dement 11:815–822

    PubMed  PubMed Central  Google Scholar 

  • Freeman GB, Lin JC, Pons J, Raha NM (2012) 39-week toxicity and toxicokinetic study of ponezumab (PF-04360365) in cynomolgus monkeys with 12-week recovery period. J Alzheimers Dis 28:531–541

    CAS  PubMed  Google Scholar 

  • Gandy S, DeMattos RB, Lemere CA, Heppner FL, Leverone J, Aguzzi A, Ershler WB, Dai J, Fraser P, Hyslop PS, Holtzman DM, Walker LC, Keller ET (2004) Alzheimer A beta vaccination of rhesus monkeys (Macaca mulatta). Alzheimer Dis Assoc Disord 18:44–46

    PubMed  Google Scholar 

  • Gardini A, Taeymans O, Cherubini GB, de Stefani A, Targett M, Vettorato E (2019) Linear magnetic resonance imaging measurements of the hippocampal formation differ in young versus old dogs. Vet Rec 185:306

    PubMed  PubMed Central  Google Scholar 

  • Gearing M, Rebeck GW, Hyman BT, Tigges J, Mirra SS (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci U S A 91:9382–9386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gearing M, Tigges J, Mori H, Mirra SS (1996) A beta40 is a major form of beta-amyloid in nonhuman primates. Neurobiol Aging 17:903–908

    CAS  PubMed  Google Scholar 

  • Gearing M, Tigges J, Mori H, Mirra SS (1997) Beta-amyloid (A beta) deposition in the brains of aged orangutans. Neurobiol Aging 18:139–146

    CAS  PubMed  Google Scholar 

  • Giannakopoulos P, Silhol S, Jallageas V, Mallet J, Bons N, Bouras C, Delaere P (1997) Quantitative analysis of tau protein-immunoreactive accumulations and beta amyloid protein deposits in the cerebral cortex of the mouse lemur, Microcebus murinus. Acta Neuropathol 94:131–139

    CAS  PubMed  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–706

    CAS  PubMed  Google Scholar 

  • Goedert M (2009) Oskar Fischer and the study of dementia. Brain J Neurol 132:1102–1111

    Google Scholar 

  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science (New York, NY) 235:877–880

    CAS  Google Scholar 

  • Gonzalez-Martinez A, Rosado B, Pesini P, Suarez ML, Santamarina G, Garcia-Belenguer S, Villegas A, Monleon I, Sarasa M (2011) Plasma beta-amyloid peptides in canine aging and cognitive dysfunction as a model of Alzheimer's disease. Exp Gerontol 46:590–596

    CAS  PubMed  Google Scholar 

  • Gotz J, Bodea LG, Goedert M (2018) Rodent models for Alzheimer disease. Nat Rev Neurosci 19:583–598

    CAS  PubMed  Google Scholar 

  • Gunn-Moore D, Kaidanovich-Beilin O, Gallego Iradi MC, Gunn-Moore F, Lovestone S (2018) Alzheimer's disease in humans and other animals: a consequence of postreproductive life span and longevity rather than aging. Alzheimers Dement 14:195–204

    PubMed  Google Scholar 

  • Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer's disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 8:312–336

    CAS  PubMed  Google Scholar 

  • Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K (2018) Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 14:639–652

    PubMed  PubMed Central  Google Scholar 

  • Hara Y, Rapp PR, Morrison JH (2012) Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. Age (Dordrecht, Netherlands) 34:1051–1073

    Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science (New York, NY) 297:353–356

    CAS  Google Scholar 

  • Head E, Pop V, Sarsoza F, Kayed R, Beckett TL, Studzinski CM, Tomic JL, Glabe CG, Murphy MP (2010) Amyloid-beta peptide and oligomers in the brain and cerebrospinal fluid of aged canines. J Alzheimers Dis 20:637–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer E, Jacobs J, Du R, Wang S, Keifer OP, Cintron AF, Dooyema J, Meng Y, Zhang X, Walker LC (2017) Amyloid-related imaging abnormalities in an aged squirrel monkey with cerebral amyloid angiopathy. J Alzheimers Dis 57(2):519–530

  • Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, Connolly B, Gantert L, Haley H, Holahan M, Purcell M, Riffel K, Lohith TG, Coleman P, Soriano A, Ogawa A, Xu S, Zhang X, Joshi E, Della Rocca J, Hesk D, Schenk DJ, Evelhoch JL (2016) Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57:1599–1606

    CAS  PubMed  Google Scholar 

  • Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ (2012) National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 8:1–13

    PubMed  PubMed Central  Google Scholar 

  • Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773

    CAS  PubMed  Google Scholar 

  • Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108:5819–5824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kametani F, Hasegawa M (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Front Neurosci 12:25

    PubMed  PubMed Central  Google Scholar 

  • Kanemaru K, Iwatsubo T, Ihara Y (1996) Comparable amyloid beta-protein (A beta) 42(43) and A beta 40 deposition in the aged monkey brain. Neurosci Lett 214:196–198

    CAS  PubMed  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    CAS  PubMed  Google Scholar 

  • Kawamata T, Akiguchi I, Maeda K, Tanaka C, Higuchi K, Hosokawa M, Takeda T (1998) Age-related changes in the brains of senescence-accelerated mice (SAM): association with glial and endothelial reactions. Microsc Res Tech 43:59–67

    CAS  PubMed  Google Scholar 

  • Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF, Egan M, Ereshefsky L, Hodgson RA, Hyde LA, Jhee S, Kleijn HJ, Kuvelkar R, Li W, Mattson BA, Mei H, Palcza J, Scott JD, Tanen M, Troyer MD, Tseng JL, Stone JA, Parker EM, Forman MS (2016) The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer's disease patients. Sci Transl Med 8:363ra150

    PubMed  Google Scholar 

  • Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer's disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310:303–311

    CAS  PubMed  Google Scholar 

  • King A (2018) The search for better animal models of Alzheimer's disease. Nature 559:S13–S15

    CAS  PubMed  Google Scholar 

  • Lacreuse A, Russell JL, Hopkins WD, Herndon JG (2014) Cognitive and motor aging in female chimpanzees. Neurobiol Aging 35:623–632

    PubMed  Google Scholar 

  • Landsberg GM, Denenberg S, Araujo JA (2010) Cognitive dysfunction in cats: a syndrome we used to dismiss as 'old age'. J Feline Med Surg 12:837–848

    PubMed  Google Scholar 

  • Latimer CS, Shively CA, Keene CD, Jorgensen MJ, Andrews RN, Register TC, Montine TJ, Wilson AM, Neth BJ, Mintz A, Maldjian JA, Whitlow CT, Kaplan JR, Craft S (2019) A nonhuman primate model of early Alzheimer's disease pathologic change: implications for disease pathogenesis. Alzheimers Dement 15:93–105

    PubMed  Google Scholar 

  • Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D, Selkoe DJ, Palmour RM, Ervin FR (2004) Alzheimer's disease Abeta vaccine reduces central nervous system Abeta levels in a non-human primate, the Caribbean vervet. Am J Pathol 165:283–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, Vercauteren F, Atifeh R, Ducatenzeiler A, Klein W, Szyf M, Alhonen L, Cuello AC (2010) A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis 20:113–126

    CAS  PubMed  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science (New York, NY) 269:973–977

    CAS  Google Scholar 

  • Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzi M, Pennec X, Frisoni GB, Ayache N (2015) Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images. Neurobiol Aging 36(Suppl 1):S42–S52

    PubMed  Google Scholar 

  • Madari FJ, Katina S, Smolek T, Novak P, Weissova T, Novak M, Zilka N (2015) Assessment of severity and progression of canine cognitive dysfunction syndrome using the CAnine DEmentia Scale (CADES). Appl Anim Behav Sci 171:138–145

    Google Scholar 

  • Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, Perry G, Odetti P, Arancio O, Tamagno E, Tabaton M (2016) Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell 15:914–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzler-Baddeley C (2007) A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer's disease and Parkinson's disease with dementia. Cortex 43:583–600

    PubMed  Google Scholar 

  • Micotti E, Paladini A, Balducci C, Tolomeo D, Frasca A, Marizzoni M, Filibian M, Caroli A, Valbusa G, Dix S, O'Neill M, Ozmen L, Czech C, Richardson JC, Frisoni GB, Forloni G (2015) Striatum and entorhinal cortex atrophy in AD mouse models: MRI comprehensive analysis. Neurobiol Aging 36:776–788

    PubMed  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer's disease (CERAD). Part II Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41:479–486

    CAS  PubMed  Google Scholar 

  • Moore S, Evans LD, Andersson T, Portelius E, Smith J, Dias TB, Saurat N, McGlade A, Kirwan P, Blennow K, Hardy J, Zetterberg H, Livesey FJ (2015) APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep 11:689–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mroczko B, Groblewska M, Litman-Zawadzka A, Kornhuber J, Lewczuk P (2018) Amyloid beta oligomers (AbetaOs) in Alzheimer's disease. J Neural Transm (Vienna) 125:177–191

    CAS  Google Scholar 

  • Mullane K, Williams M (2019) Preclinical models of Alzheimer's disease: relevance and translational validity. Curr Protoc Pharmacol 84:e57

    PubMed  Google Scholar 

  • Muller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schable S, Wedel D, Horn AH, Sticht H, de Souza Silva MA, Gottmann K, Sergeeva OA, Huston JP, Keyvani K, Korth C (2016) Amyloid-beta dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain J Neurol 139:509–525

    Google Scholar 

  • Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science (New York, NY) 254:97–99

    CAS  Google Scholar 

  • Myers A, McGonigle P (2019) Overview of transgenic mouse models for Alzheimer's disease. Curr Protoc Neurosci 89:e81

    PubMed  Google Scholar 

  • Nagahara AH, Bernot T, Tuszynski MH (2010) Age-related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery. Neurobiol Aging 31:1020–1031

    PubMed  Google Scholar 

  • Nakamura S, Nakayama H, Goto N, Ono F, Sakakibara I, Yoshikawa Y (1998) Histopathological studies of senile plaques and cerebral amyloidosis in cynomolgus monkeys. J Med Primatol 27:244–252

    CAS  PubMed  Google Scholar 

  • Neilson JC, Hart BL, Cliff KD, Ruehl WW (2001) Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J Am Vet Med Assoc 218:1787–1791

    CAS  PubMed  Google Scholar 

  • Neveu H, Hafen T, Zimmermann E, Rumpler Y (1998) Comparison of the genetic diversity of wild and captive groups of Microcebus murinus using the random amplified polymorphic DNA method. Folia Primatol (Basel) 69(Suppl 1):127–135

    Google Scholar 

  • Newman M, Ebrahimie E, Lardelli M (2014) Using the zebrafish model for Alzheimer's disease research. Front Genet 5:189

    PubMed  PubMed Central  Google Scholar 

  • Noda A, Murakami Y, Nishiyama S, Fukumoto D, Miyoshi S, Tsukada H, Nishimura S (2008) Amyloid imaging in aged and young macaques with [11C]PIB and [18F]FDDNP. Synapse 62:472–475

    CAS  PubMed  Google Scholar 

  • Noh D, Choi S, Choi H, Lee Y, Lee K (2017) Evaluation of interthalamic adhesion size as an indicator of brain atrophy in dogs with and without cognitive dysfunction. Vet Radiol Ultrasound 58:581–587

    PubMed  Google Scholar 

  • Oikawa N, Kimura N, Yanagisawa K (2010) Alzheimer-type tau pathology in advanced aged nonhuman primate brains harboring substantial amyloid deposition. Brain Res 1315:137–149

    CAS  PubMed  Google Scholar 

  • Ontiveros-Torres MA, Labra-Barrios ML, Diaz-Cintra S, Aguilar-Vazquez AR, Moreno-Campuzano S, Flores-Rodriguez P, Luna-Herrera C, Mena R, Perry G, Floran-Garduno B, Luna-Munoz J, Luna-Arias JP (2016) Fibrillar amyloid-beta accumulation triggers an inflammatory mechanism leading to hyperphosphorylation of the carboxyl-terminal end of tau polypeptide in the hippocampal formation of the 3xTg-AD transgenic mouse. J Alzheimers Dis 52:243–269

    CAS  PubMed  Google Scholar 

  • Owen RT (2016) Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer's dementia. Drugs Today (Barc) 52:239–248

    CAS  Google Scholar 

  • Ozawa M, Chambers JK, Uchida K, Nakayama H (2016) The relation between canine cognitive dysfunction and age-related brain lesions. J Vet Med Sci 78:997–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parent MJ, Zimmer ER, Shin M, Kang MS, Fonov VS, Mathieu A, Aliaga A, Kostikov A, Do Carmo S, Dea D, Poirier J, Soucy JP, Gauthier S, Cuello AC, Rosa-Neto P (2017) Multimodal imaging in rat model recapitulates Alzheimer's disease biomarkers abnormalities. J Neurosci 37:12263–12271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paspalas CD, Carlyle BC, Leslie S, Preuss TM, Crimins JL, Huttner AJ, van Dyck CH, Rosene DL, Nairn AC, Arnsten AFT (2018) The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimers Dement 14:680–691

    PubMed  Google Scholar 

  • Penninkilampi R, Brothers HM, Eslick GD (2017) Safety and efficacy of anti-amyloid-beta immunotherapy in Alzheimer's disease: a systematic review and meta-analysis. J Neuroimmune Pharmacol 12:194–203

    PubMed  Google Scholar 

  • Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ (2013) Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 521:4318–4338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips KA, Watson CM, Bearman A, Knippenberg AR, Adams J, Ross C, Tardif SD (2019) Age-related changes in myelin of axons of the corpus callosum and cognitive decline in common marmosets. Am J Primatol 81:e22949

    PubMed  PubMed Central  Google Scholar 

  • Picq JL (2007) Aging affects executive functions and memory in mouse lemur primates. Exp Gerontol 42:223–232

    PubMed  Google Scholar 

  • Picq JL, Villain N, Gary C, Pifferi F, Dhenain M (2015) Jumping stand apparatus reveals rapidly specific age-related cognitive impairments in mouse lemur primates. PLoS One 10:e0146238

    PubMed  PubMed Central  Google Scholar 

  • Pugliese M, Geloso MC, Carrasco JL, Mascort J, Michetti F, Mahy N (2006) Canine cognitive deficit correlates with diffuse plaque maturation and S100beta (−) astrocytosis but not with insulin cerebrospinal fluid level. Acta Neuropathol 111:519–528

    PubMed  Google Scholar 

  • Purro SA, Farrow MA, Linehan J, Nazari T, Thomas DX, Chen Z, Mengel D, Saito T, Saido T, Rudge P, Brandner S, Walsh DM, Collinge J (2018) Transmission of amyloid-beta protein pathology from cadaveric pituitary growth hormone. Nature 564:415–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu WY, Yang Q, Zhang W, Wang N, Zhang D, Huang Y, Ma C (2018) The correlations between postmortem brain pathologies and cognitive dysfunction in aging and Alzheimer's disease. Curr Alzheimer Res 15:462–473

    CAS  PubMed  Google Scholar 

  • Reid SJ, McKean NE, Henty K, Portelius E, Blennow K, Rudiger SR, Bawden CS, Handley RR, Verma PJ, Faull RLM, Waldvogel HJ, Zetterberg H, Snell RG (2017) Alzheimer's disease markers in the aged sheep (Ovis aries). Neurobiol Aging 58:112–119

    CAS  PubMed  Google Scholar 

  • Ringman JM, Monsell S, Ng DW, Zhou Y, Nguyen A, Coppola G, Van Berlo V, Mendez MF, Tung S, Weintraub S, Mesulam MM, Bigio EH, Gitelman DR, Fisher-Hubbard AO, Albin RL, Vinters HV (2016) Neuropathology of autosomal dominant Alzheimer disease in the National Alzheimer Coordinating Center Database. J Neuropathol Exp Neurol 75:284–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P (1994) Cambridge neuropsychological test automated battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 5:266–281

    CAS  PubMed  Google Scholar 

  • Rodrigues LL, Mesquita LP, Costa RC, Gomes RG, Biihrer DA, Maiorka PC (2018) Multiple infarcts and hemorrhages in the central nervous system of a dog with cerebral amyloid angiopathy: a case report. BMC Vet Res 14:370

    PubMed  PubMed Central  Google Scholar 

  • Rosen RF, Walker LC, Levine H 3rd (2011) PIB binding in aged primate brain: enrichment of high-affinity sites in humans with Alzheimer's disease. Neurobiol Aging 32:223–234

    CAS  PubMed  Google Scholar 

  • Sahakian BJ, Owen AM (1992) Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J R Soc Med 85:399–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, Van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14:1023–1032

    CAS  PubMed  Google Scholar 

  • Salvin HE, McGreevy PD, Sachdev PS, Valenzuela MJ (2011) The canine cognitive dysfunction rating scale (CCDR): a data-driven and ecologically relevant assessment tool. Vet J 188:331–336

    PubMed  Google Scholar 

  • Sani S, Traul D, Klink A, Niaraki N, Gonzalo-Ruiz A, Wu CK, Geula C (2003) Distribution, progression and chemical composition of cortical amyloid-beta deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathol 105:145–156

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Holahan MA, Colussi D, Crouthamel MC, Devanarayan V, Ellis J, Espeseth A, Gates AT, Graham SL, Gregro AR, Hazuda D, Hochman JH, Holloway K, Jin L, Kahana J, Lai MT, Lineberger J, McGaughey G, Moore KP, Nantermet P, Pietrak B, Price EA, Rajapakse H, Stauffer S, Steinbeiser MA, Seabrook G, Selnick HG, Shi XP, Stanton MG, Swestock J, Tugusheva K, Tyler KX, Vacca JP, Wong J, Wu G, Xu M, Cook JJ, Simon AJ (2009) First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. J Pharmacol Exp Ther 328:131–140

    CAS  PubMed  Google Scholar 

  • Schmidt F, Boltze J, Jager C, Hofmann S, Willems N, Seeger J, Hartig W, Stolzing A (2015) Detection and quantification of beta-amyloid, pyroglutamyl Abeta, and tau in aged canines. J Neuropathol Exp Neurol 74:912–923

    CAS  PubMed  Google Scholar 

  • Schou M, Varnas K, Sandell J, Johnstrom P, Cselenyi Z, Svensson S, Nakao R, Amini N, Bergman L, Sumic A, Gulyas B, Lindstrom-Boo E, Halldin C, Farde L (2014) Synthesis, radiolabeling, and in vivo pharmacokinetic evaluation of the amyloid beta radioligand [11C]AZD4694 in nonhuman primates. Mol Imaging Biol 16:173–179

    PubMed  Google Scholar 

  • Schutt T, Toft N, Berendt M (2015) Cognitive function, progression of age-related behavioral changes, biomarkers, and survival in dogs more than 8 years old. J Vet Intern Med 29:1569–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science (New York, NY) 298:789–791

    CAS  Google Scholar 

  • Selkoe DJ (2019) Alzheimer disease and aducanumab: adjusting our approach. Nat Rev Neurol 15:365–366

    PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 8:595–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science (New York, NY) 235:873–877

    CAS  Google Scholar 

  • Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E (2000) Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci Lett 278:169–172

    CAS  PubMed  Google Scholar 

  • Serizawa S, Chambers JK, Une Y (2012) Beta amyloid deposition and neurofibrillary tangles spontaneously occur in the brains of captive cheetahs (Acinonyx jubatus). Vet Pathol 49:304–312

    CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Qian J, Muzikansky A, Monsell SE, Montine TJ, Frosch MP, Betensky RA, Hyman BT (2016) Thal amyloid stages do not significantly impact the correlation between neuropathological change and cognition in the Alzheimer disease continuum. J Neuropathol Exp Neurol 75:516–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537:50–56

    CAS  PubMed  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14:837–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375:754–760

    CAS  PubMed  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2008) Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol Aging 29:39–50

    PubMed  Google Scholar 

  • Sloane JA, Pietropaolo MF, Rosene DL, Moss MB, Peters A, Kemper T, Abraham CR (1997) Lack of correlation between plaque burden and cognition in the aged monkey. Acta Neuropathol 94:471–478

    CAS  PubMed  Google Scholar 

  • Smolek T, Madari A, Farbakova J, Kandrac O, Jadhav S, Cente M, Brezovakova V, Novak M, Zilka N (2016) Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol 524:874–895

    CAS  PubMed  Google Scholar 

  • Snellman A, Lopez-Picon FR, Rokka J, Salmona M, Forloni G, Scheinin M, Solin O, Rinne JO, Haaparanta-Solin M (2013) Longitudinal amyloid imaging in mouse brain with 11C-PIB: comparison of APP23, Tg2576, and APPswe-PS1dE9 mouse models of Alzheimer disease. J Nucl Med 54:1434–1441

    CAS  PubMed  Google Scholar 

  • Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N (2017) Evolution of the human nervous system function, structure, and development. Cell 170:226–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34:639–659

    CAS  PubMed  Google Scholar 

  • Tapp PD, Siwak CT, Gao FQ, Chiou JY, Black SE, Head E, Muggenburg BA, Cotman CW, Milgram NW, Su MY (2004) Frontal lobe volume, function, and beta-amyloid pathology in a canine model of aging. J Neurosci 24:8205–8213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    CAS  PubMed  Google Scholar 

  • Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  • Tokita Y, Kaji K, Lu J, Okura Y, Kohyama K, Matsumoto Y (2010) Assessment of non-viral amyloid-beta DNA vaccines on amyloid-beta reduction and safety in rhesus monkeys. J Alzheimers Dis 22:1351–1361

    CAS  PubMed  Google Scholar 

  • Uchihara T, Endo K, Kondo H, Okabayashi S, Shimozawa N, Yasutomi Y, Adachi E, Kimura N (2016) Tau pathology in aged cynomolgus monkeys is progressive supranuclear palsy/corticobasal degeneration- but not Alzheimer disease-like -Ultrastructural mapping of tau by EDX. Acta Neuropathol Commun 4:118

    PubMed  PubMed Central  Google Scholar 

  • van der Kant R, Goldstein LS (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32:502–515

    PubMed  Google Scholar 

  • van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245

    PubMed  PubMed Central  Google Scholar 

  • von Coelln R, Shulman LM (2016) Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol 29:727–734

    Google Scholar 

  • Walker LC, Jucker M (2017) The exceptional vulnerability of humans to Alzheimer's disease. Trends Mol Med 23:534–545

    PubMed  PubMed Central  Google Scholar 

  • Walker LC, Kitt CA, Struble RG, Wagster MV, Price DL, Cork LC (1988) The neural basis of memory decline in aged monkeys. Neurobiol Aging 9:657–666

    CAS  PubMed  Google Scholar 

  • Weed MR, Taffe MA, Polis I, Roberts AC, Robbins TW, Koob GF, Bloom FE, Gold LH (1999) Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Brain Res Cogn Brain Res 8:185–201

    CAS  PubMed  Google Scholar 

  • Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropathol Exp Neurol 32:566–584

    CAS  PubMed  Google Scholar 

  • Yang D, Xie Z, Stephenson D, Morton D, Hicks CD, Brown TM, Sriram R, O'Neill S, Raunig D, Bocan T (2011) Volumetric MRI and MRS provide sensitive measures of Alzheimer's disease neuropathology in inducible Tau transgenic mice (rTg4510). NeuroImage 54:2652–2658

    CAS  PubMed  Google Scholar 

  • Yu CH, Song GS, Yhee JY, Kim JH, Im KS, Nho WG, Lee JH, Sur JH (2011) Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer's disease and the brain of aged dogs with cognitive dysfunction. J Comp Pathol 145:45–58

    CAS  PubMed  Google Scholar 

  • Yue F, Lu C, Ai Y, Chan P, Zhang Z (2014) Age-associated changes of cerebrospinal fluid amyloid-beta and tau in cynomolgus monkeys. Neurobiol Aging 35:1656–1659

    CAS  PubMed  Google Scholar 

  • Zeamer A, Decamp E, Clark K, Schneider JS (2011) Attention, executive functioning and memory in normal aged rhesus monkeys. Behav Brain Res 219:23–30

    PubMed  Google Scholar 

  • Zeiss CJ (2015) Improving the predictive value of interventional animal models data. Drug Discov Today 20:475–482

    PubMed  Google Scholar 

  • Zeiss CJ (2017) From reproducibility to translation in neurodegenerative disease. ILAR J 58:106–114

    CAS  PubMed  Google Scholar 

  • Zhang J, Chen B, Lu J, Wu Y, Wang S, Yao Z, Zhu L, Qiao Y, Sun Q, Qin W, Zhao Q, Jia J, Wei C (2019) Brains of rhesus monkeys display Abeta deposits and glial pathology while lacking Abeta dimers and other Alzheimer's pathologies. Aging Cell 18:e12978

    PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Lu J, Yao Z, Wang S, Zhu L, Wang J, Chen B (2017) Upregulation of Abeta42 in the brain and bodily fluids of rhesus monkeys with aging. J Mol Neurosci 61:79–87

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline J. Zeiss.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeiss, C.J. Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies. Cell Tissue Res 380, 273–286 (2020). https://doi.org/10.1007/s00441-020-03198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03198-6

Keywords

Navigation