Skip to main content

Advertisement

Log in

Targeted knock-in of CreERT2 in zebrafish using CRISPR/Cas9

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

New genome-editing approaches, such as the CRISPR/Cas system, have opened up great opportunities to insert or delete genes at targeted loci and have revolutionized genetics in model organisms like the zebrafish. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-optimized CreERT2 transgene at the otx2 gene locus to generate a conditional Cre-driver line. We chose otx2 as it is a patterning gene of the anterior neural plate that is expressed during early development. By knocking in CreERT2 upstream of the endogenous ATG of otx2, we utilized this gene’s native promoter and enhancer elements to perfectly match CreERT2 and endogenous otx2 expression patterns. Next, by combining this novel driver line with a Cre-dependent reporter line, we show that only in the presence of tamoxifen can efficient Cre-loxp-mediated recombination be achieved in the anterior neural plate-derived tissues like the telencephalon, the eye and the optic tectum. Our results imply that the otx2:CreERT2 transgenic fish will be a valuable tool for lineage tracing and conditional mutant studies in larval and adult zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA et al (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190

    CAS  PubMed  Google Scholar 

  • Brand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford, pp 7–37

    Google Scholar 

  • Chekuru A, Kuscha V, Hans S, Brand M (2017) Ligand-controlled site-specific recombination in zebrafish. In site-specific recombinases (Springer), pp. 87–97

  • Dai J, Cui X, Zhu Z, Hu W (2010) Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 6:756–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felker A, Mosimann C (2016) Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol 135:219–244

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Horsley V (2011) Ferreting out stem cells from their niches. Nat Cell Biol 13:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagmann M, Bruggmann R, Xue L, Georgiev O, Schaffner W, Rungger D, Spaniol P, Gerster T (1998) Homologous recombination and DNA-end joining reactions in zygotes and early embryos of zebrafish (Danio rerio) and Drosophila melanogaster. Biol Chem 379:673–681

    Article  CAS  PubMed  Google Scholar 

  • Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4:e4640

    Article  PubMed  PubMed Central  Google Scholar 

  • Henninger J, Santoso B, Hans S, Durand E, Moore J, Mosimann C, Brand M, Traver D, Zon L (2017) Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat Cell Biol 19:17–27

    Article  CAS  PubMed  Google Scholar 

  • Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36:654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesavan G, Chekuru A, Machate A, Brand M (2017) CRISPR/Cas9 mediated zebrafish knock-in as a novel strategy to study midbrain-hindbrain boundary development. Front Neuroanat 11:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T (2015) CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 5:10710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20:713–724

    Article  CAS  PubMed  Google Scholar 

  • Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:4831–4841

    Article  CAS  PubMed  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhao L, Page-McCaw PS, Chen W (2016) Zebrafish genome engineering using the CRISPR–Cas9 system. Trends Genet 32:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128:4789–4800

    CAS  PubMed  Google Scholar 

  • Ota S, Taimatsu K, Yanagi K, Namiki T, Ohga R, Higashijima SI, Kawahara A (2016) Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci Rep 6:34991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, Ciruna B, Sanes JR, Lichtman JW, Schier AF (2013) Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140:2835–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raible F, Brand M (2004) Divide et Impera—the midbrain-hindbrain boundary and its organizer. Trends Neurosci 27:727–734

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran, R., Reifler, A., Wan, J., and Goldman, D. (2012). Application of Cre-loxP recombination for lineage tracing of adult zebrafish retinal stem cells. Retinal Development: Methods and Protocols, 884 129–140

  • Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395

    CAS  PubMed  Google Scholar 

  • Rhinn M, Lun K, Amores A, Yan YL, Postlethwait JH, Brand M (2003) Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mech Dev 120:919–936

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Picker A, Brand M (2006) Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol 16:5–12

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z et al (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123:165–178

    CAS  PubMed  Google Scholar 

  • Sinha DK, Neveu P, Gagey N, Aujard I, Le Saux T, Rampon C, Gauron C, Kawakami K, Leucht C, Bally-Cuif L (2010) Photoactivation of the CreERT2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. Zebrafish 7:199–204

    Article  CAS  PubMed  Google Scholar 

  • Sunmonu NA, Li K, Guo Q, Li JY (2011) Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary. Development 138:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerfield, M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edition. University of Oregon Press, Eugene

  • Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD (2014) The role of homeobox genes in retinal development and disease. Dev Biol 393:195–208

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, Chen S, Liu Y (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 113:E6117–E6125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to the Chen and Wente labs for providing plasmids to generate Cas9 and sgRNA mRNA (via addgene), Daniela Zoeller for help with cloning the bait plasmid with CreERT2, Dilce Gozuyasli for heat shock experiments, past and present members of the Brand lab for discussions and Vasuprada Iyengar for language and content editing. We thank Marika Fischer, Jitka Michling, Claudia Meyer and Daniela Mögel for dedicated zebrafish care. The Light Microscopy Facility, a core facility of BIOTEC/CRTD at the Technische Universität Dresden, supported this work.

Funding

G.K was supported by post-doctoral fellowships from Swedish research council (Vetenskapsrådet) and an EMBO long-term fellowship (ALTF 350-2011). This work was also supported by an ERC advanced grant (Zf-BrainReg) and project grants of the German Research Foundation (Deutsche Forschungsgemeinschaft, project number BR 1746/6-1 and BR 1746/3) to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesavan, G., Hammer, J., Hans, S. et al. Targeted knock-in of CreERT2 in zebrafish using CRISPR/Cas9. Cell Tissue Res 372, 41–50 (2018). https://doi.org/10.1007/s00441-018-2798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2798-x

Keywords

Navigation