Skip to main content
Log in

Natural and forced neurogenesis: similar and yet different?

  • At-a-glance article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Briscoe J, Small S (2015) Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:3996–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A, Massimino L, Giannelli SG, Sacchetti S, Caiazzo M et al (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 17:719–734

    Article  CAS  PubMed  Google Scholar 

  • Darnell D, Gilbert SF (2017) Neuroembryology. Wiley Interdiscip Rev Dev Biol. 6(1). doi: https://doi.org/10.1002/wdev.215. Review

  • Desai AR, McConnell SK (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127:2863–2872

    CAS  PubMed  Google Scholar 

  • Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, Bali C, Orduz D, Bilheu A, Herpoel A et al (2013) Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77(3):440–456. https://doi.org/10.1016/j.neuron.2012.12.011.

  • Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14:67–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP et al (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:396–409

    Article  CAS  PubMed  Google Scholar 

  • Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780

    Article  CAS  PubMed  Google Scholar 

  • Guillemot F, Hassan BA (2017) Beyond proneural: emerging functions and regulations of proneural proteins. Curr Opin Neurobiol 42:93–101

    Article  CAS  PubMed  Google Scholar 

  • Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8:e1000373

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrich C, Bergami M, Gascon S, Lepier A, Vigano F, Dimou L, Sutor B, Berninger B, Gotz M (2014) Sox2-Mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep 3:1000–1014

    Article  CAS  Google Scholar 

  • Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascon S, Khan MA, Lie DC, Dellavalle A et al (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471–476

    Article  CAS  PubMed  Google Scholar 

  • Kishi Y, Fujii Y, Hirabayashi Y, Gotoh Y (2012) HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat Neurosci 15:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X, Drake S, Euong Ang C et al (2017) Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 544(7649):245-249. https://doi.org/10.1038/nature21722.

  • Marin O (2013) Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci 38:2019–2029

    Article  PubMed  Google Scholar 

  • Masserdotti G, Gillotin S, Sutor B, Drechsel D, Irmler M, Jorgensen HF, Sass S, Theis FJ, Beckers J, Berninger B et al (2015) Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17:74–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masserdotti G, Gascon S, Gotz M (2016) Direct neuronal reprogramming: learning from and for development. Development 143:2494–2510

    Article  CAS  PubMed  Google Scholar 

  • Rouaux C, Arlotta P (2013) Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 15:214–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222

    Article  CAS  PubMed  Google Scholar 

  • Smith DK, Yang J, Liu ML, Zhang CL (2016) Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 7:955–969

    Article  CAS  Google Scholar 

  • Stoykova A, Treichel D, Hallonet M, Gruss P (2000) Pax6 Modulates the dorsoventral patterning of the mammalian telencephalon. J Neurosci 20:8042–8050

    CAS  PubMed  Google Scholar 

  • Su Y, Shin J, Zhong C, Wang S, Roychowdhury P, Lim J, Kim D, Ming GL, Song H (2017) Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat Neurosci 20:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toresson H, Potter SS, Campbell K (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127:4361–4371

    CAS  PubMed  Google Scholar 

  • Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T, Grealish S, Parmar M (2015) In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Rep 12:474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M et al (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534:391–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Long JE, Flandin P, Pla R, Waclaw RR, Campbell K, Rubenstein JL (2013) Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants. J Comp Neurol 521:1561–1584

    Article  CAS  PubMed  Google Scholar 

  • Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR, Giresi PG, Ng YH, Marro S, Neff NF et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:621–635

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson G, Dennis D, Schuurmans C (2013) Proneural genes in neocortical development. Neuroscience 253:256–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L, Chen L, Jin P et al (2015) Small molecules efficiently reprogram human Astroglial cells into functional neurons. Cell Stem Cell 17:735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sven Falk or Marisa Karow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falk, S., Karow, M. Natural and forced neurogenesis: similar and yet different?. Cell Tissue Res 371, 181–187 (2018). https://doi.org/10.1007/s00441-017-2690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2690-0

Keywords

Navigation