Skip to main content

Advertisement

Log in

Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Capacitation comprises a series of structural and functional modifications of sperm that confer fertilizing ability. We previously reported that the testis-specific isoform of Na/K-ATPase (ATP1A4) regulated bovine sperm capacitation through signaling mechanisms involving kinases. During subsequent investigations to elucidate mechanisms by which ATP1A4 regulates sperm capacitation, we observed that ATP1A4 was localised in both raft and non-raft fractions of the sperm plasma membrane and that its total content was increased in both membrane fractions during capacitation. The objective of the present study was to investigate mechanism(s) of capacitation-associated increase in the content of ATP1A4. Despite the widely accepted dogma of transcriptional/translational quiescence, incubation of sperm with either ouabain (specific ligand for ATP1A4) or heparin increased ATP1A4 content in raft and non-raft sperm membrane fractions, total sperm protein extracts (immunoblotting) and fixed sperm (flow cytometry), with a concurrent increase in Na/K-ATPase enzyme activity. This capacitation-associated increase in ATP1A4 content was partially decreased by chloramphenicol (mitochondrial translation inhibitor) but not affected by actinomycin D (transcription inhibitor). To demonstrate de novo ATP1A4 synthesis, we evaluated incorporation of bodipy conjugated lysine in this protein during capacitation. A partial decrease in bodipy-lysine incorporation occurred in ATP1A4 from sperm capacitated in the presence of chloramphenicol. Therefore, increased ATP1A4 content during capacitation was attributed to mitochondrial translation of ATP1A4 mRNA present in ejaculated sperm, rather than gene transcription. To our knowledge, this is the first report demonstrating ATP1A4 synthesis during bovine sperm capacitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed NA, Salem MH, El-Oksh HA, Pursel VG (1984) Effect of incubation conditions, inhibitors and seminal plasma on protein synthesis in ram spermatozoa. J Reprod Fertil 71:213–219

    Article  CAS  PubMed  Google Scholar 

  • Amikura R, Kashikawa M, Nakamura A, Kobayashi S (2001) Presence of mitochondria-type ribosomes outside mitochondria in germ plasm of Drosophila embryos. Proc Natl Acad Sci U S A 98:9133–9138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amikura R, Sato K, Kobayashi S (2005) Role of mitochondrial ribosome-dependent translation in germline formation in Drosophila embryos. Mech Dev 122:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G (1991) Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J Androl 12:323–330

    CAS  PubMed  Google Scholar 

  • Bensaude O (2011) Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription 2:103–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9:971–980

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Devi MS, Dhople VM, Jesudasan RA (2013) A mouse protein that localizes to acrosome and sperm tail is regulated by Y-chromosome. BMC Cell Biol 14:50, 2121-14-50

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  • Boue F, Blais J, Sullivan R (1996) Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod 54:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Bragg PW, Handel MA (1979) Protein synthesis in mouse spermatozoa. Biol Reprod 20:333–337

    Article  CAS  PubMed  Google Scholar 

  • Braun RE (1998) Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol 9:483–489

    Article  CAS  PubMed  Google Scholar 

  • Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H (2003) Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod 68:837–845

    Article  CAS  PubMed  Google Scholar 

  • Brockmann R, Beyer A, Heinisch JJ, Wilhelm T (2007) Posttranscriptional expression regulation: what determines translation rates? PLoS Comput Biol 3:e57

    Article  PubMed  PubMed Central  Google Scholar 

  • Card CJ, Anderson EJ, Zamberlan S, Krieger KE, Kaproth M, Sartini BL (2013) Cryopreserved bovine spermatozoal transcript profile as revealed by high-throughput ribonucleic acid sequencing. Biol Reprod 88:49

    Article  PubMed  Google Scholar 

  • Chennathukuzhi V, Morales CR, El-Alfy M, Hecht NB (2003) The kinesin KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive element modulator-regulated mRNAs in male germ cells. Proc Natl Acad Sci U S A 100:15566–15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross NL (2004) Reorganization of lipid rafts during capacitation of human sperm. Biol Reprod 71:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • de Lamirande E, Gagnon C (1998) Paradoxical effect of reagents for sulfhydryl and disulfide groups on human sperm capacitation and superoxide production. Free Radic Biol Med 25:803–817

    Article  PubMed  Google Scholar 

  • de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol Biosyst 5:1512–1526

    PubMed  Google Scholar 

  • Dani C, Mechti N, Piechaczyk M, Lebleu B, Jeanteur P, Blanchard JM (1985) Increased rate of degradation of c-myc mRNA in interferon-treated Daudi cells. Proc Natl Acad Sci U S A 82:4896–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel L, Etkovitz N, Weiss SR, Rubinstein S, Ickowicz D, Breitbart H (2010) Regulation of the sperm EGF receptor by ouabain leads to initiation of the acrosome reaction. Dev Biol 344:650–657

    Article  CAS  PubMed  Google Scholar 

  • Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD, Chowdhary BP, Raudsepp T (2013) Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS ONE 8:e56535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi N, Takashima H, Kinjo M, Sakata K, Kawahashi Y, Oishi Y, Oyama R, Miyamoto-Sato E, Sawasaki T, Endo Y, Yanagawa H (2002) Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res 12:487–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donatello S, Babina IS, Hazelwood LD, Hill AD, Nabi IR, Hopkins AM (2012) Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration. Am J Pathol 181:2172–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doris PA, Jenkins LA, Stocco DM (1994) Is ouabain an authentic endogenous mammalian substance derived from the adrenal? Hypertension 23:632–638

    Article  CAS  PubMed  Google Scholar 

  • Dudiki T, Kadunganattil S, Ferrara JK, Kline DW, Vijayaraghavan S (2015) Changes in carboxy methylation and tyrosine phosphorylation of protein phosphatase PP2A are associated with epididymal sperm maturation and motility. PLoS ONE 10:e0141961

    Article  PubMed  PubMed Central  Google Scholar 

  • Dun MD, Aitken RJ, Nixon B (2012) The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 18:420–435

    Article  PubMed  Google Scholar 

  • Dvorakova K, Moore HD, Sebkova N, Palecek J (2005) Cytoskeleton localization in the sperm head prior to fertilization. Reproduction 130:61–69

    Article  CAS  PubMed  Google Scholar 

  • Flesch FM, Colenbrander B, van Golde LM, Gadella BM (1999) Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophys Res Commun 262:787–792

    Article  CAS  PubMed  Google Scholar 

  • Fuster CD, Farrell D, Stern FA, Hecht NB (1977) RNA polymerase activity in bovine spermatozoa. J Cell Biol 74:698–706

    Article  CAS  PubMed  Google Scholar 

  • Galantino-Homer HL, Visconti PE, Kopf GS (1997) Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′5′-monophosphate-dependent pathway. Biol Reprod 56:707–719

    Article  CAS  PubMed  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964

    Article  CAS  PubMed  Google Scholar 

  • Gilbert I, Bissonnette N, Boissonneault G, Vallee M, Robert C (2007) A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction 133:1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Gur Y, Breitbart H (2006) Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev 20:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Fox MH (1996) Comparison of flow cytometry and western blotting to measure Hsp70. Cytometry 25:280–286

    Article  CAS  PubMed  Google Scholar 

  • Heyn P, Kalinka AT, Tomancak P, Neugebauer KM (2015) Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37:148–154

    Article  CAS  PubMed  Google Scholar 

  • Hillman P, Ickowicz D, Vizel R, Breitbart H (2013) Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PLoS ONE 8:e68873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homareda H, Kawakami K, Nagano K, Matsui H (1989) Location of signal sequences for membrane insertion of the Na+, K + −ATPase alpha subunit. Mol Cell Biol 9:5742–5745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idler RK, Yan W (2012) Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl 33:309–337

    Article  CAS  PubMed  Google Scholar 

  • Jimenez T, McDermott JP, Sanchez G, Blanco G (2011a) Na, K-ATPase alpha4 isoform is essential for sperm fertility. Proc Natl Acad Sci U S A 108:644–649

    Article  CAS  PubMed  Google Scholar 

  • Jimenez T, Sanchez G, McDermott JP, Nguyen AN, Kumar TR, Blanco G (2011b) Increased expression of the Na, K-ATPase alpha4 isoform enhances sperm motility in transgenic mice. Biol Reprod 84:153–161

    Article  CAS  PubMed  Google Scholar 

  • Jimenez T, Sanchez G, Blanco G (2012) Activity of the Na, K-ATPase alpha4 isoform is regulated during sperm capacitation to support sperm motility. J Androl 33:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Hynes G, Carne A, Ashworth A, Willison K (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Patel D, Naz RK (1993) c-MYC mRNA is present in human sperm cells. Cell Mol Biol Res 39:111–117

    CAS  PubMed  Google Scholar 

  • Li Z, Langhans SA (2015) Transcriptional regulators of Na, K-ATPase subunits. Front Cell Dev Biol 3:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xie Z (2009) The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch 457:635–644

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Tian J, Liu L, Pierre S, Liu J, Shapiro J, Xie ZJ (2007) Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem 282:10585–10593

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Askari A (2006) Beta-subunit of cardiac Na + −K + −ATPase dictates the concentration of the functional enzyme in caveolae. Am J Physiol Cell Physiol 291:C569–C578

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Mohammadi K, Aynafshar B, Wang H, Li D, Liu J, Ivanov AV, Xie Z, Askari A (2003) Role of caveolae in signal-transducing function of cardiac Na+/K + −ATPase. Am J Physiol Cell Physiol 284:C1550–C1560

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Mata J, Marguerat S, Bahler J (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30:506–514

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Ostermeier GC (2006) Spermatozoal RNA: why is it there and what does it do? Gynecol Obstet Fertil 34:840–846

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJ, Lamb JF, Martin-Vasallo P (2000) Na+, K + −ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  CAS  PubMed  Google Scholar 

  • Morales CR, Lefrancois S, Chennathukuzhi V, El-Alfy M, Wu X, Yang J, Gerton GL, Hecht NB (2002) A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells. Dev Biol 246:480–494

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Garay C, De la Vega-Beltran JL, Delgado R, Labarca P, Felix R, Darszon A (2001) Inwardly rectifying K(+) channels in spermatogenic cells: functional expression and implication in sperm capacitation. Dev Biol 234:261–274

    Article  CAS  PubMed  Google Scholar 

  • Naz RK (1998) Effect of actinomycin D and cycloheximide on human sperm function. Arch Androl 41:135–142

    Article  CAS  PubMed  Google Scholar 

  • Newton LD, Kastelic JP, Wong B, van der Hoorn F, Thundathil J (2009) Elevated testicular temperature modulates expression patterns of sperm proteins in Holstein bulls. Mol Reprod Dev 76:109–118

    Article  CAS  PubMed  Google Scholar 

  • Newton LD, Krishnakumar S, Menon AG, Kastelic JP, van der Hoorn FA, Thundathil JC (2010) Na+/K + ATPase regulates sperm capacitation through a mechanism involving kinases and redistribution of its testis-specific isoform. Mol Reprod Dev 77:136–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ninomiya Y, Ichinose S (2007) Subcellular distribution of mitochondrial ribosomal RNA in the mouse oocyte and zygote. PLoS ONE 2:e1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA (2002) Spermatozoal RNA profiles of normal fertile men. Lancet 360:772–777

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Amunts A, Brown A, Ott M, Amunts A, Brown A (2016) Organization and Regulation of Mitochondrial Protein Synthesis. Annual Review of Biochemistry 85(1):77–101

  • Parrish JJ, Susko-Parrish J, Winer MA, First NL (1988) Capacitation of bovine sperm by heparin. Biol Reprod 38:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Premkumar E, Bhargava PM (1972) Transcription and translation in bovine spermatozoa. Nat New Biol 240:139–143

    Article  CAS  PubMed  Google Scholar 

  • Rotfeld H, Hillman P, Ickowicz D, Breitbart H (2014) PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade. Reproduction 147:347–356

    Article  CAS  PubMed  Google Scholar 

  • Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE (2007) Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65:245–259

    CAS  PubMed  Google Scholar 

  • Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41:4104–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver LM (1985) Mouse t haplotypes. Annu Rev Genet 19:179–208

    Article  CAS  PubMed  Google Scholar 

  • Spokas EG, Spur BW (2001) Rapid measurement of low levels of sodium, potassium-ATPase activity by ascorbic acid reduction without strong acid. Anal Biochem 299:112–116

    Article  CAS  PubMed  Google Scholar 

  • Thaler CD, Thomas M, Ramalie JR (2006) Reorganization of mouse sperm lipid rafts by capacitation. Mol Reprod Dev 73:1541–1549

    Article  CAS  PubMed  Google Scholar 

  • Thundathil JC, Anzar M, Buhr MM (2006) Na+/K + ATPase as a signaling molecule during bovine sperm capacitation. Biol Reprod 75:308–317

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–969

    Article  CAS  PubMed  Google Scholar 

  • Toshimori K (2009) Dynamics of the sperm head: modification and maturation events from spermatogenesis to egg activation. Springer, Berlin

    Book  Google Scholar 

  • Villarroya S, Scholler R (1987) Lateral diffusion of a human sperm-head antigen during incubation in a capacitation medium and induction of the acrosome reaction in vitro. J Reprod Fertil 80:545–562

    Article  CAS  PubMed  Google Scholar 

  • Villegas J, Araya P, Bustos-Obregon E, Burzio LO (2002) Localization of the 16S mitochondrial rRNA in the nucleus of mammalian spermatogenic cells. Mol Hum Reprod 8:977–983

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Ning X, Fornes MW, Alvarez JG, Stein P, Connors SA, Kopf GS (1999) Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol 214:429–443

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vredenburgh-Wilberg WL, Parrish JJ (1995) Intracellular pH of bovine sperm increases during capacitation. Mol Reprod Dev 40:490–502

    Article  CAS  PubMed  Google Scholar 

  • Wagoner K, Sanchez G, Nguyen AN, Enders GC, Blanco G (2005) Different expression and activity of the alpha1 and alpha4 isoforms of the Na, K-ATPase during rat male germ cell ontogeny. Reproduction 130:627–641

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z (2004) Ouabain assembles signaling cascades through the caveolar Na+/K + −ATPase. J Biol Chem 279:17250–17259

    Article  CAS  PubMed  Google Scholar 

  • Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574

    Article  CAS  PubMed  Google Scholar 

  • Woo AL, James PF, Lingrel JB (1999) Characterization of the fourth alpha isoform of the Na, K-ATPase. J Membr Biol 169:39–44

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R (1994) Mammlian fertilization. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven, New York, pp 189–317

    Google Scholar 

Download references

Acknowledgments

G.D. Rajamanickam was supported through a studentship from the CIHR training program in Genetics, Child Development and Health, University of Calgary. We thank Alta Genetics Inc., Calgary for providing semen samples for the study. We also thank Laurie Kennedy (Centre for Advanced Technologies, University of Calgary) for assisting with flow cytometric analysis and Grace Kwong (Faculty of Veterinary Medicine, University of Calgary) for statistical consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob C. Thundathil.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Funding

This study received funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant # RGPN-2014-04850 to JT).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Fig. S1-S1''''' Sperm kinematic parameters in ouabain- and heparin-capacitated sperm. Motility parameters (total and progressive motility) were recorded using CASA and hyperactivation was monitored by three kinematic values including ALH, VCL and LIN under ouabain and heparin capacitating conditions for 4 h. Data shown were expressed as mean ± SEM (n = 5). Values without a common lowercase letter differed (P < 0.05). Fig. S2. Tyrosine phosphorylation patterns in ouabain- and heparin-capacitated sperm. For evaluation of tyrosine phosphorylation, total sperm homogenates were immunoblotted with anti-phosphotyrosine antibody (upper panel) and reprobed with β-tubulin (lower panel) for equal protein loading (n = 5). Fig. S3. Distribution of GM1 (raft marker indicated by red arrows) in raft and non-raft membrane fractions (GIF 91 kb)

High resolution image (TIF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamanickam, G.D., Kastelic, J.P. & Thundathil, J.C. Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes. Cell Tissue Res 368, 187–200 (2017). https://doi.org/10.1007/s00441-016-2514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2514-7

Keywords

Navigation