Skip to main content

Advertisement

Log in

A novel culture system for adult porcine intestinal crypts

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Porcine models are useful for investigating therapeutic approaches to short bowel syndrome and potentially to intestinal stem cell (ISC) transplantation. Whereas techniques for the culture and genetic manipulation of ISCs from mice and humans are well established, similar methods for porcine stem cells have not been reported. Jejunal crypts were isolated from murine, human, and juvenile and adult porcine small intestine, suspended in Matrigel, and co-cultured with syngeneic intestinal subepithelial myofibroblasts (ISEMFs) or cultured without feeder cells in various culture media. Media containing epidermal growth factor, noggin, and R-spondin 1 (ENR medium) were supplemented with various combinations of Wnt3a- or ISEMF-conditioned medium (CM) and with glycogen synthase kinase 3 inhibitor (GSK3i), and their effects were studied on cultured crypts. Cell lineage differentiation was assessed by immunohistochemistry and quantitative polymerase chain reaction. Cultured porcine cells were serially passaged and transduced with a lentiviral vector. Whereas ENR medium supported murine enteroid growth, it did not sustain porcine crypts beyond 5 days. Supplementation of Wnt3a-CM and GSK3i resulted in the formation of complex porcine enteroids with budding extensions. These enteroids contained a mixture of stem and differentiated cells and were successfully passaged in the presence of GSK3i. Crypts grown in media supplemented with porcine ISEMF-CM formed spheroids that were less well differentiated than enteroids. Enteroids and spheroids were transfected with a lentivirus with high efficiency. Thus, our method maintains juvenile and adult porcine crypt cells long-term in culture. Porcine enteroids and spheroids can be successfully passaged and transduced by using lentiviral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agopian VG, Chen DC, Avansino JR, Stelzner M (2009) Intestinal stem cell organoid transplantation generates neomucosa in dogs. J Gastrointest Surg 13:971–982

    Article  PubMed  Google Scholar 

  • Al-Kharusi MRA, Smartt HJM, Greenhough A, Collard TJ, Emery ED, Williams AC, Paraskeva C (2013) LGR5 promotes survival in human colorectal adenoma cells and is upregulated by PGE2: implications for targeting adenoma stem cells with NSAIDs. Carcinogenesis 34:1150–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avansino JR, Chen DC, Hoagland VD, Woolman JD, Stelzner M (2006) Orthotopic transplantation of intestinal mucosal organoids in rodents. Surgery 140:423–434

    Article  PubMed  Google Scholar 

  • Bitar KN, Raghavan S (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 24:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PJ, Miller BG, Stokes CR, Blazquez NB, Bourne FJ (1988) Histochemistry of mucins of pig intestinal secretory epithelial cells before and after weaning. J Comp Pathol 98:313–323

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, Lennernas H, Zhong Y, Amidon GL, Yu LX, Sun D (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res 23:1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Chen DC, Agopian VG, Avansino JR, Lee JK, Farley SM, Stelzner M (2006) Optical tissue window: a novel model for optimizing engraftment of intestinal stem cell organoids. J Surg Res 134:52–60

    Article  CAS  PubMed  Google Scholar 

  • Dewey CE, Straw BE (2006) Herd examination. In: Straw BE, Zimmerman JJ, D’Alliare S, Taylor DJ (eds) Diseases of swine, 9th edn. Blackwell, Ames, pp 13–14

    Google Scholar 

  • Fordham RP, Yui S, Hannan NRF, Soendergaard C, Madgwick A, Schweiger PJ, Nielsen OH, Vallier L, Pedersen RA, Nakamura T, Watanabe M, Jensen KB (2013) Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13:734–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller MK, Faulk DM, Sundaram N, Shroyer NF, Henning SJ, Helmrath MA (2012) Intestinal crypts reproducibly expand in culture. J Surg Res 178:48–54. doi:10.1016/j.jss.2012.03.037

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbons DL, Spencer J (2011) Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol 4:148–157

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez LM, Williamson I, Piedrahita JA, Blikslager AT, Magness ST (2013) Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration. PLoS One 8:e66465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding J, Roberts RM, Mirochnitchenko O (2013) Large animal models for stem cell therapy. Stem Cell Res Ther 4:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Jabaji Z, Sears CM, Brinkley GJ, Lei NY, Joshi VS, Wang J, Lewis M, Stelzner M, Martín MG, Dunn JC (2013) Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng Part C Methods 19:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, Clevers H, Batlle E (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, Huch M, Es JH van, Clevers H (2012) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9:81–83

  • Lahar N, Lei NY, Wang J, Jabaji Z, Tung SC, Joshi V, Lewis M, Stelzner M, Martín MG, Dunn JC (2011) Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium. PLoS One 6:e26898

  • Lei NY, Jabaji Z, Wang J, Joshi VS, Brinkley GJ, Khalil H, Wang F, Jaroszewicz A, Pellegrini M, Li L, Lewis M, Stelzner M, Dunn JC, Martín MG (2014) Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS One 9:e84651

  • Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B, Prat M, Devauchelle P, Sabourin JC, Simon JM, Bonneau M, Lataillade JJ, Benderitter M (2013) Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med 2:916–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller KR, Martins KV, Murtaugh MP, Schuurman HJ, Papas KK (2013) Manufacturing porcine islets: culture at 22 °C has no advantage above culture at 37 °C: a gene expression evaluation. Xenotransplantation 20:418–428

    Article  PubMed  Google Scholar 

  • Mustata RC, Vasile G, Fernandez-Vallone V, Strollo S, Lefort A, Libert F, Monteyne D, Pérez-Morga D, Vassart G, Garcia MI (2013) Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep 5:421–432

    Article  CAS  PubMed  Google Scholar 

  • Orlando G, Domínguez-Bendala J, Shupe T, Bergman C, Bitar KN, Booth C, Carbone M, Koch KL, Lerut JP, Neuberger JM, Petersen B, Ricordi C, Atala A, Stratta RJ, Soker S (2013) Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut 62:774–786

    Article  CAS  PubMed  Google Scholar 

  • Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC (2009) Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res 156:205–212

    Article  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, Wetering M van de, Barker N, Stange DE, Es JH van, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

  • Sato T, Stange DE, Ferrante M, Vries RG, Es JH van, Brink S van den, Houdt WJ van, Pronk A, Gorp J van, Siersema PD, Clevers H (2011a) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772

  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, Born M van den, Barker N, Shroyer NF, Wetering M van de, Clevers H (2011b) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

  • Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, Bouzek DC, Alaiwa MH, Hoegger MJ, Ludwig PS, Taft PJ, Wallen TJ, Wohlford-Lenane C, McMenimen JD, Chen JH, Bogan KL, Adam RJ, Hornick EE, Nelson GA 4th, Hoffman EA, Chang EH, Zabner J, McCray PB Jr, Prather RS, Meyerholz DK, Welsh MJ (2013) Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 123:2685–2693

  • Swartz DD, Andreadis ST (2013) Animal models for vascular tissue-engineering. Curr Opin Biotechnol 24:916–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud Å, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ, Samuelson LC (2012) Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139:488–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Kolomeyer AM, Zarbin MA, Townes-Anderson E (2011) Organotypic culture of full-thickness adult porcine retina. J Vis Exp 2011:2655. 10.3791/2655doi: 10.3791/2655

  • Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF, Wells JM, Helmrath MA (2014) An in vivo model of human small intestine using pluripotent stem cells. Nat Med 20:1310–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yandza T, Tauc M, Saint-Paul MC, Ouaissi M, Gugenheim J, Hébuterne X (2012) The pig as a preclinical model for intestinal ischemia-reperfusion and transplantation studies. J Surg Res 178:807–819

    Article  PubMed  Google Scholar 

  • Yeung TM, Chia LA, Kosinski CM, Kuo CJ (2011) Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci 68:2513–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Farin H, van Es J, Clevers H (2014) Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11:106–112

    Article  CAS  PubMed  Google Scholar 

  • Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 18:618–623

  • Zhang Q, Widmer G, Tzipori S (2013) A pig model of the human gastrointestinal tract. Gut Microbes 4:193–200

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Randal Buddington (University of Memphis) for providing fetal porcine intestinal samples; Drs. JanLee Jensen and Sandra Duarte-Vogel, Sonia Watt, Guillermo Moreno, and Eileen So (University of California, Los Angeles) for providing porcine tissue; Liara Gonzalez (North Carolina State University) for sharing expertise with neonatal piglet culture; Scott Magness (University of North Carolina) for helpful discussions; and Emmanuelle Faure (University of California, Los Angeles Vectorcore) for help and guidance with viral transduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias G. Stelzner.

Additional information

The UCLA Vectorcore is supported by CURE/P30 DK041301. This research was performed as a project of the Intestinal Stem Cell Consortium, a collaborative research project funded by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Allergy and Infections Diseases (DK085535-01 and DK085535-02S2) and was supported in part by the California Institute of Regenerative Medicine (RT2-01985).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Characterization of porcine ISEMFs by immunostaining (green) for (a) α smooth muscle actin, (b) vimentin, and (c) desmin. Nuclei are counter-stained with DAPI (blue). Bar 100 μm.(GIF 137 kb)

High Resolution Image (TIF 4.29 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, H.A., Lei, N.Y., Brinkley, G. et al. A novel culture system for adult porcine intestinal crypts. Cell Tissue Res 365, 123–134 (2016). https://doi.org/10.1007/s00441-016-2367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2367-0

Keywords

Navigation