Skip to main content
Log in

Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243

    Article  CAS  PubMed  Google Scholar 

  • Aguayo-Mazzucato C, Bonner-Weir S (2010) Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6:139–148

    Article  PubMed  Google Scholar 

  • Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA, Duvillie B, Scharfmann R (2007) Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 56:1248–1258

    Article  CAS  PubMed  Google Scholar 

  • Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Sharma A (2002) Pancreatic stem cells. J Pathol 197:519–526

    Article  PubMed  Google Scholar 

  • Bouwens L, Houbracken I, Mfopou JK (2013) The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol 9:598–606

    Article  CAS  PubMed  Google Scholar 

  • Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  CAS  PubMed  Google Scholar 

  • Daley GQ (2012) The promise and perils of stem cell therapeutics. Cell Stem Cell 10:740–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  CAS  PubMed  Google Scholar 

  • Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R (2006) The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes 55:582–589

    Article  CAS  PubMed  Google Scholar 

  • Edsbagge J, Johansson JK, Esni F, Luo Y, Radice GL, Semb H (2005) Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. Development 132:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P (2012) The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 30:1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank MH, Sayegh MH (2004) Immunomodulatory functions of mesenchymal stem cells. Lancet 363:1411–1412

    Article  PubMed  Google Scholar 

  • Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT (1996) Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 122:439–447

    CAS  PubMed  Google Scholar 

  • Guz Y, Nasir I, Teitelman G (2001) Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142:4956–4968

    CAS  PubMed  Google Scholar 

  • Hardikar AA, Lees JG, Sidhu KS, Colvin E, Tuch BE (2006) Stem-cell therapy for diabetes cure: how close are we? Curr Stem Cell Res Ther 1:425–436

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Ogihara T, Yamada T, Ishigaki Y, Imai J, Uno K, Gao J, Kaneko K, Ishihara H, Sasano H, Nakauchi H, Oka Y, Katagiri H (2007) Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 148:2006–2015

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770

    Article  CAS  PubMed  Google Scholar 

  • Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290:189–199

    Article  CAS  PubMed  Google Scholar 

  • Jensen J (2004) Gene regulatory factors in pancreatic development. Dev Dyn 229:176–200

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes Dev 15:111–127

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li F, Qi H, Feng G, Yuan K, Deng H, Zhou H (2008) Coexpression of Pdx1 and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev 17:815–823

    Article  CAS  PubMed  Google Scholar 

  • Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA (2004) Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91–98

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, William-Ignarro S, Byrns R, Balestrieri ML, Crimi E, Farzati B, Mancini FP, de Nigris F, Matarazzo A, D’Amora M, Abbondanza C, Fiorito C, Giovane A, Florio A, Varricchio E, Palagiano A, Minucci PB, Tecce MF, Giordano A, Pavan A, Ignarro LJ (2008) Therapeutic targeting of the stem cell niche in experimental hindlimb ischemia. Nat Clin Pract Cardiovasc Med 5:571–579

    Article  CAS  PubMed  Google Scholar 

  • Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22:1998–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Potapova IA et al (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25:1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose MI, Crisera CA, Colen KL, Connelly PR, Longaker MT, Gittes GK (1999) Epithelio-mesenchymal interactions in the developing mouse pancreas: morphogenesis of the adult architecture. J Pediatr Surg 34:774–780

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57:3099–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sordi V (2009) Mesenchymal stem cell homing capacity. Transplantation 87:S42–S45

    Article  PubMed  Google Scholar 

  • Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  CAS  PubMed  Google Scholar 

  • Teng C, Guo Y, Zhang H, Zhang H, Ding M, Deng H (2007) Identification and characterization of label-retaining cells in mouse pancreas. Differentiation 75:702–712

    Article  CAS  PubMed  Google Scholar 

  • Todd JA (2009) Stem cells and a cure for type 1 diabetes? Proc Natl Acad Sci U S A 106:15523–15524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28:219–226

    Article  CAS  PubMed  Google Scholar 

  • Urban VS, Kiss J, Kovács J, Gócza E, Vas V, Monostori E, Uher F (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253

    Article  CAS  PubMed  Google Scholar 

  • Vija L, Farge D, Gautier JF, Vexiau P, Dumitrache C, Bourgarit A, Verrecchia F, Larghero J (2009) Mesenchymal stem cells: stem cell therapy perspectives for type 1 diabetes. Diabetes Metab 35:85–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Hui Qi in the Clinical Medicine Research Center, Shenzhen People’s Hospital for providing technical assistance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisha Li.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest.

Additional information

This research was supported by the National Natural Science Foundation of China (grant nos. 31150007, 31201052), Jilin Province Science and Technology Development Program for Young Scientists Fund (grant no. 20150520036JH), and Bethune Medical Research Support Program - Advanced Interdisciplinary Innovation Project (grant no. 2013101004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, F., Gao, F. et al. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus. Cell Tissue Res 364, 345–355 (2016). https://doi.org/10.1007/s00441-015-2330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2330-5

Keywords

Navigation