Skip to main content
Log in

Mammalian sperm interactions with the female reproductive tract

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The mammalian female reproductive tract interacts with sperm in various ways in order to facilitate sperm migration to the egg while impeding migrations of pathogens into the tract, to keep sperm alive during the time between mating and ovulation, and to select the fittest sperm for fertilization. The two main types of interactions are physical and molecular. Physical interactions include the swimming responses of sperm to the microarchitecture of walls, to fluid flows, and to fluid viscoelasticity. When sperm encounter walls, they have a strong tendency to remain swimming along them. Sperm will also orient their swimming into gentle fluid flows. The female tract seems to use these tendencies of sperm to guide them to the site of fertilization. When sperm hyperactivate, they are better able to penetrate highly viscoelastic media, such as the cumulus matrix surrounding eggs. Molecular interactions include communications of sperm surface molecules with receptors on the epithelial lining of the tract. There is evidence that specific sperm surface molecules are required to enable sperm to pass through the uterotubal junction into the oviduct. When sperm reach the oviduct, most bind to the oviductal epithelium. This interaction holds sperm in a storage reservoir until ovulation and serves to maintain the fertilization competence of stored sperm. When sperm are released from the reservoir, they detach from and re-attach to the epithelium repeatedly while ascending to the site of fertilization. We are only beginning to understand the communications that may pass between sperm and epithelium during these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker RD, Degen AA (1972) Transport of live and dead boar spermatozoa within the reproductive tract of gilts. J Reprod Fertil 28(3):369–377

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Suarez SS (2012) Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol Reprod 86(5):140,1-8

  • Chian RC, Sirard MA (1995) Fertilizing ability of bovine spermatozoa cocultured with oviduct epithelial cells. Biol Reprod 52(1):156–162

    Article  PubMed  CAS  Google Scholar 

  • Day BN, Polge C (1968) Effects of progesterone on fertilization and egg transport in the pig. J Reprod Fertil 17(1):227–230

    Article  PubMed  CAS  Google Scholar 

  • DeMott RP, Suarez SS (1992) Hyperactivated sperm progress in the mouse oviduct. Biol Reprod 46(5):779–785

    Article  PubMed  CAS  Google Scholar 

  • DeMott RP, Lefebvre R, Suarez SS (1995) Carbohydrates mediate the adherence of hamster sperm to oviductal epithelium. Biol Reprod 52(6):1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J (2012) Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci U S A 109(21):8007–8010

    Article  PubMed  PubMed Central  Google Scholar 

  • Desnoyers L, Manjunath P (1992) Major proteins of bovine seminal plasma exhibit novel interactions with phospholipid. J Biol Chem 267(14):10149–10155

    PubMed  CAS  Google Scholar 

  • Dobrinski I, Ignotz GG, Thomas PG, Ball BA (1996) Role of carbohydrates in the attachment of equine spermatozoa to uterine tubal (oviductal) epithelial cells in vitro. Am J Vet Res 57(11):1635–1639

    PubMed  CAS  Google Scholar 

  • Dobrinski I, Smith TT, Suarez SS, Ball BA (1997) Membrane contact with oviductal epithelium modulates the intracellular calcium concentration of equine spermatozoa in vitro. Biol Reprod 56(4):861–869

    Article  PubMed  CAS  Google Scholar 

  • Dunn PF, Picologlou BF (1976) Viscoelastic properties of cumulus oöphorus. Biorheology 13(6):379–384

    PubMed  CAS  Google Scholar 

  • Ellington JE, Ignotz GG, Varner DD, Marcucio RS, Mathison P, Ball BA (1993) In vitro interaction between oviduct epithelial and equine sperm. Arch Androl 31(2):79–86

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Lefebvre J, Manjunath P (2006) Bovine seminal plasma proteins and their relatives: A new expanding superfamily in mammals. Gene 375:63–74

    Article  PubMed  CAS  Google Scholar 

  • Fujihara Y, Okabe M, Ikawa M (2014) GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod 90:60

    Article  PubMed  CAS  Google Scholar 

  • Gaddum-Rosse P (1981) Some observations on sperm transport through the uterotubal junction of the rat. Am J Anat 160(3):333–341

    Article  PubMed  CAS  Google Scholar 

  • Gaddum-Rosse P, Blandau RJ (1976) Comparative observations on ciliary currents in mammalian oviducts. Biol Reprod 14(5):605–609

    Article  PubMed  CAS  Google Scholar 

  • Ghersevich S, Massa E, Zumoffen C (2015) Oviductal secretion and gamete interaction. Reproduction 149(1):R1–R14

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb W, Meizel S (1987) Biochemical studies of metalloendoprotease activity in the spermatozoa of three mammalian species. J Androl 8(1):14–24

    Article  PubMed  CAS  Google Scholar 

  • Greube A, Muller K, Topfer-Petersen E, Herrmann A, Muller P (2001) Influence of the bovine seminal plasma protein PDC-109 on the physical state of membranes. Biochemistry 40(28):8326–8334

    Article  PubMed  CAS  Google Scholar 

  • Gwathmey TM, Ignotz GG, Suarez SS (2003) PDC-109 (BSP-A1/A2) promotes bull sperm binding to oviductal epithelium in vitro and may be involved in forming the oviductal sperm reservoir. Biol Reprod 69(3):809–815

    Article  PubMed  CAS  Google Scholar 

  • Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P, Suarez SS (2006) Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biol Reprod 75(4):501–507

    Article  PubMed  CAS  Google Scholar 

  • Hafez ESE, Black DL (1969) The mammalian uterotubal junction. In: Washington State University (ed) The Mammalian oviduct; comparative biology and methodology. University of Chicago Press, Chicago, pp 85–128

    Google Scholar 

  • Hagaman JR, Moyer JS, Bachman ES et al (1998) Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci U S A 95(5):2552–2557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawk HW (1983) Sperm survival and transport in the female reproductive tract. J Dairy Sci 66(12):2645–2660

    Article  PubMed  CAS  Google Scholar 

  • Ho HC, Granish KA, Suarez SS (2002) Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol 250(1):208–217

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Yamagata K, Sugiura S, Watanabe K, Baba T (2002) A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J Biol Chem 277(19):16976–16984

    Article  PubMed  CAS  Google Scholar 

  • Hung PH, Suarez SS (2012) Alterations to the bull sperm surface proteins that bind sperm to oviductal epithelium. Biol Reprod 87(4):88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter RH (1972) Local action of progesterone leading to polyspermic fertilization in pigs. J Reprod Fertil 31(3):433–444

    Article  PubMed  CAS  Google Scholar 

  • Hunter RH (1973) Polyspermic fertilization in pigs after tubal deposition of excessive numbers of spermatozoa. J Exp Zool 183(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Hunter RH, Leglise PC (1971) Polyspermic fertilization following tubal surgery in pigs, with particular reference to the role of the isthmus. J Reprod Fertil 24(2):233–246

    Article  PubMed  CAS  Google Scholar 

  • Hunter RH, Nichol R (1983) Transport of spermatozoa in the sheep oviduct: preovulatory sequestering of cells in the caudal isthmus. J Exp Zool 228(1):121–128

    Article  PubMed  CAS  Google Scholar 

  • Hunter RH, Wilmut I (1984) Sperm transport in the cow: peri-ovulatory redistribution of viable cells within the oviduct. Reprod Nutr Dev 24(5A):597–608

    Article  PubMed  CAS  Google Scholar 

  • Ignotz GG, Lo MC, Perez CL, Gwathmey TM, Suarez SS (2001) Characterization of a fucose-binding protein from bull sperm and seminal plasma that may be responsible for formation of the oviductal sperm reservoir. Biol Reprod 64(6):1806–1811

    Article  PubMed  CAS  Google Scholar 

  • Ignotz GG, Cho MY, Suarez SS (2007) Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol Reprod 77(6):906–913

    Article  PubMed  CAS  Google Scholar 

  • Jansen RP (1978) Fallopian tube isthmic mucus and ovum transport. Science 201(4353):349–351

    Article  PubMed  CAS  Google Scholar 

  • Jansen RP, Bajpai VK (1982) Oviduct acid mucus glycoproteins in the estrous rabbit: ultrastructure and histochemistry. Biol Reprod 26(1):155–168

    Article  PubMed  CAS  Google Scholar 

  • Kantsler V, Dunkel J, Blayney M, Goldstein RE (2014) Rheotaxis facilitates upstream navigation of mammalian sperm cells. Elife 3, e02403. doi:10.7554/eLife.02403

    PubMed  PubMed Central  Google Scholar 

  • Kawakami E, Kashiwagi C, Hori T, Tsutsui T (2001) Effects of canine oviduct epithelial cells on movement and capacitation of homologous spermatozoa in vitro. Anim Reprod Sci 68(1–2):121–131

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim J (2013) Viscoelastic characterization of mouse zona pellucida. IEEE Trans Biomed Eng 60(2):569–575

    Article  PubMed  Google Scholar 

  • Lapointe S, Sullivan R, Sirard MA (1998) Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol Reprod 58(3):747–753

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre R, Suarez SS (1996) Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol Reprod 54(3):575–582

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre R, Chenoweth PJ, Drost M, LeClear CT, MacCubbin M, Dutton JT, Suarez SS (1995) Characterization of the oviductal sperm reservoir in cattle. Biol Reprod 53(5):1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre R, Lo MC, Suarez SS (1997) Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol Reprod 56(5):1198–1204

    Article  PubMed  CAS  Google Scholar 

  • Machado SA, Kadirvel G, Daigneault BW, Korneli C, Miller P, Bovin N, Miller DJ (2014) LewisX-containing glycans on the porcine oviductal epithelium contribute to formation of the sperm reservoir. Biol Reprod 91(6):140

    Article  PubMed  CAS  Google Scholar 

  • Manjunath P, Sairam MR, Uma J (1987) Purification of four gelatin-binding proteins from bovine seminal plasma by affinity chromatography. Biosci Rep 7(3):231–238

    Article  PubMed  CAS  Google Scholar 

  • Martyn F, McAuliffe FM, Wingfield M (2014) The role of the cervix in fertility: is it time for a reappraisal? Hum Reprod 29(10):2092–2098

    Article  PubMed  CAS  Google Scholar 

  • McGraw LA, Suarez SS, Wolfner MF (2015) On a matter of seminal importance. Bioessays 37(2):142–147

    Article  PubMed  Google Scholar 

  • Miki K, Clapham DE (2013) Rheotaxis guides mammalian sperm. Curr Biol 23(6):443–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller P, Erlemann KR, Muller K, Calvete JJ, Topfer-Petersen E, Marienfeld K, Herrmann A (1998) Biophysical characterization of the interaction of bovine seminal plasma protein PDC-109 with phospholipid vesicles. Eur Biophys J 27(1):33–41

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Greube A, Topfer-Petersen E, Herrmann A (2002) Influence of the bovine seminal plasma protein PDC-109 on cholesterol in the presence of phospholipids. Eur Biophys J 31(6):438–447

    Article  PubMed  CAS  Google Scholar 

  • Mullins KJ, Saacke RG (1989) Study of the functional anatomy of bovine cervical mucosa with special reference to mucus secretion and sperm transport. Anat Rec 225:106–117

  • Murray SC, Smith TT (1997) Sperm interaction with fallopian tube apical membrane enhances sperm motility and delays capacitation. Fertil Steril 68(2):351–357

    Article  PubMed  Google Scholar 

  • Nakanishi T, Ikawa M, Yamada S, Parvinen M, Baba T, Nishimune Y, Okabe M (1999) Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett 449(2–3):277–283

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Isotani A, Yamaguchi R, Ikawa M, Baba T, Suarez SS, Okabe M (2004) Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol Reprod 71(3):959–965

    Article  PubMed  CAS  Google Scholar 

  • Nauc V, Manjunath P (2000) Radioimmunoassays for bull seminal plasma proteins (BSP-A1/-A2, BSP-A3, and BSP-30-Kilodaltons), and their quantification in seminal plasma and sperm. Biol Reprod 63(4):1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Nixon B, Ecroyd HW, Dacheux JL, Jones RC (2011) Monotremes provide a key to understanding the evolutionary significance of epididymal sperm maturation. J Androl 32(6):665–671

    Article  PubMed  Google Scholar 

  • Okabe M (2015) Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J Androl. doi:10.4103/1008-682X.153299

    PubMed  PubMed Central  Google Scholar 

  • Overstreet JW, Cooper GW (1978) Sperm transport in the reproductive tract of the female rabbit: II. The sustained phase of transport. Biol Reprod 19(1):115–132

    Article  PubMed  CAS  Google Scholar 

  • Polge C, Salamon S, Wilmut I (1970) Fertilizing capacity of frozen boar semen following surgical insemination. Vet Rec 87(15):424–429

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS (1991) Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod 44(1):102–107

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan M, Anbazhagan V, Pratap TV, Marsh D, Swamy MJ (2001) Membrane insertion and lipid-protein interactions of bovine seminal plasma protein PDC-109 investigated by spin-label electron spin resonance spectroscopy. Biophys J 81(4):2215–2225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revah I, Gadella BM, Flesch FM, Colenbrander B, Suarez SS (2000) Physiological state of bull sperm affects fucose- and mannose-binding properties. Biol Reprod 62(4):1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Roberts SJ, Lein DH, Foote RH, Drost M (1986) Veterinary obstetrics and genital diseases (Theriogenology), 3rd edn. Published by the authors; distributed by David and Charles, North Pomfret, VT

  • Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ (2011) Seminal plasma proteins: what role do they play? Am J Reprod Immunol 66(Suppl 1):11–22

    Article  PubMed  Google Scholar 

  • Rothschild (1963) Non-random distribution of bull spermatozoa in a drop of spermsuspension. Nature 198(488):1221

    Article  Google Scholar 

  • Salois D, Ménard M, Paquette Y, Manjunath P (1999) Complementary deoxyribonucleic acid cloning and tissue expression of BSP-A3 and BSP-30-kDa: phosphatidylcholine and heparin-binding proteins of bovine seminal plasma. Biol Reprod 61(1):288–297

    Article  PubMed  CAS  Google Scholar 

  • Smith TT, Nothnick WB (1997) Role of direct contact between spermatozoa and oviductal epithelial cells in maintaining rabbit sperm viability. Biol Reprod 56(1):83–89

    Article  PubMed  CAS  Google Scholar 

  • Smith TT, Yanagimachi R (1991) Attachment and release of spermatozoa from the caudal isthmus of the hamster oviduct. J Reprod Fertil 91(2):567–573

    Article  PubMed  CAS  Google Scholar 

  • Smith TT, Koyanagi F, Yanagimachi R (1987) Distribution and number of spermatozoa in the oviduct of the golden hamster after natural mating and artificial insemination. Biol Reprod 37(1):225–234

    Article  PubMed  CAS  Google Scholar 

  • Soubeyrand S, Manjunath P (1997) Novel seminal phospholipase A2 is inhibited by the major proteins of bovine seminal plasma. Biochim Biophys Acta 1341(2):183–188

    Article  PubMed  CAS  Google Scholar 

  • Suarez SS (1987) Sperm transport and motility in the mouse oviduct: observations in situ. Biol Reprod 36(1):203–210

    Article  PubMed  CAS  Google Scholar 

  • Suarez SS (2015) Gamete and zygote transport. In: Plant TM, Zeleznich AJ (eds) Knobil and Neill’s Physiology of Reproduction, vol 1, 4th edn. Elsevier, Oxford, pp 197–232

    Google Scholar 

  • Suarez SS, Dai X (1992) Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol Reprod 46(4):686–691

    Article  PubMed  CAS  Google Scholar 

  • Suarez SS, Katz DF, Owen DH, Andrew JB, Powell RL (1991) Evidence for the function of hyperactivated motility in sperm. Biol Reprod 44:375–381

    Article  PubMed  CAS  Google Scholar 

  • Suarez SS, Brockman K, Lefebvre R (1997) Distribution of mucus and sperm in bovine oviducts after artificial insemination: the physical environment of the oviductal sperm reservoir. Biol Reprod 56(2):447–453

    Article  PubMed  CAS  Google Scholar 

  • Suarez SS, Revah I, Lo M, Kolle S (1998) Bull sperm binding to oviductal epithelium is mediated by a Ca2 + −dependent lectin on sperm that recognizes Lewis-a trisaccharide. Biol Reprod 59(1):39–44

    Article  PubMed  CAS  Google Scholar 

  • Tollner TL, Yudin AI, Tarantal AF, Treece CA, Overstreet JW, Cherr GN (2008) Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol Reprod 78(3):400–412

    Article  PubMed  CAS  Google Scholar 

  • Tollner TL, Vandevoort CA, Yudin AI, Treece CA, Overstreet JW, Cherr GN (2009) Release of DEFB126 from macaque sperm and completion of capacitation are triggered by conditions that simulate periovulatory oviduct fluid. Mol Reprod Dev 76(5):431–443

    Article  PubMed  CAS  Google Scholar 

  • Tung CK, Ardon F, Fiore AG, Suarez SS, Wu M (2014) Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip 14(7):1348–1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tung CK, Hu L, Fiore AG, Ardon F, Hickman DG, Gilbert RO, Suarez SS, Wu M (2015) Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc Natl Acad Sci U S A 112(17):5431–5436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winet H, Bernstein GS, Head J (1984) Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J Reprod Fertil 70(2):511–523

    Article  PubMed  CAS  Google Scholar 

  • Woolley DM (2003) Motility of spermatozoa at surfaces. Reproduction 126(2):259–270

    Article  PubMed  CAS  Google Scholar 

  • Wrobel KH, Kujat R, Fehle G (1993) The bovine tubouterine junction: general organization and surface morphology. Cell Tissue Res 271(2):227–239

    Article  PubMed  CAS  Google Scholar 

  • Wrobel KH, Cortez R, Fauci L (2014) Modeling viscoelastic networks in Stokes flow. Phys Fluids 26:113102

    Article  CAS  Google Scholar 

  • Yamaguchi R, Muro Y, Isotani A, Tokuhiro K, Takumi K, Adham I, Ikawa M, Okabe M (2009) Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod 81(1):142–146

    Article  PubMed  CAS  Google Scholar 

  • Yaniz JL, Lopez-Gatius F, Santolaria P, Mullins KJ (2000) Study of the functional anatomy of bovine oviductal mucosa. Anat Rec 260(3):268–278

    Article  PubMed  CAS  Google Scholar 

  • Yudin AI, Tollner TL, Li MW, Treece CA, Overstreet JW, Cherr GN (2003) ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol Reprod 69(4):1118–1128

    Article  PubMed  CAS  Google Scholar 

  • Zamboni L (1972) Fertilization in the mouse. In: Moghissi KS, Hafez ESE (eds) Biology of mammalian fertilization and implantation. Thomas, Springfield, pp 213–262

    Google Scholar 

Download references

Acknowledgments

Work completed by the author in the last five years has been supported by NIH grants 1 R01 HD070038 and 1 R03 HD062471, as well as USDA-NRI grant 2008-35203-19031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Suarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez, S.S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363, 185–194 (2016). https://doi.org/10.1007/s00441-015-2244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2244-2

Keywords

Navigation