Skip to main content

Advertisement

Log in

Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Palatal shelf elevation is a crucial process in palate development, with the contribution of various factors. Disturbances in any factor during this process result in cleft palate. Prior to palatal shelf elevation starting from embryonic day 12.5, the Rac1 expression level in the bend region of the mid-palatal shelf progressively increases and the cell densities in the bend and groove regions gradually become higher than those in the middle region. The comparative decrease of cell density in the middle region is correlated with a gradual alteration of the arrangement of fibronectin (FN) fibers, whereas the bend and groove regions with higher cell densities maintain ring-like FN arrangements. Rac1 overexpression alters the fibrillar FN arrangement in the middle region to the ring-like arrangement by increasing cell density. This alteration is sufficient to induce the failure of palatal shelf elevation, ultimately leading to cleft palate. Furthermore, the inhibition of FN delays palatal shelf elevation. Thus, the spatiotemporal expression of Rac1 plays an impressive role in palatal shelf elevation by regulating FN arrangement within the palatal shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R, Yamada G, Chen Y (2005) The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev Biol 277:102–113

    Article  CAS  PubMed  Google Scholar 

  • Brinkley LL, Bookstein FL (1986) Cell distribution during mouse secondary palate closure. II. Mesenchymal cells. J Embryol Exp Morphol 96:111–130

    CAS  PubMed  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  • Bush JO, Jiang R (2012) Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 139:231–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou MJ, Kosazuma T, Takigawa T, Yamada S, Takahara S, Shiota K (2004) Palatal shelf movement during palatogenesis: a fate map of the fetal mouse palate cultured in vitro. Anat Embryol 208:19–25

    Article  PubMed  Google Scholar 

  • Clark RA, An JQ, Greiling D, Khan A, Schwarzbauer JE (2003) Fibroblast migration on fibronectin requires three distinct functional domains. J Invest Dermatol 121:695–705

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Keller R, DeSimone DW (2004) Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev Dyn 231:888–895

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Marsden M, Keller R, Desimone DW (2006) Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844

    Article  CAS  PubMed  Google Scholar 

  • Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW (2009) Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev Cell 16:421–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  • Ferguson MW (1988) Palate development. Development 103:41–60

    PubMed  Google Scholar 

  • Fernandez-Sauze S, Grall D, Cseh B, Van Obberghen-Schilling E (2009) Regulation of fibronectin matrix assembly and capillary morphogenesis in endothelial cells by Rho family GTPases. Exp Cell Res 315:2092–2104

    Article  CAS  PubMed  Google Scholar 

  • Gritli-Linde A (2007) Molecular control of secondary palate development. Dev Biol 301:309–326

    Article  CAS  PubMed  Google Scholar 

  • He F, Chen Y (2012) Wnt signaling in lip and palate development. Front Oral biol 16:81–90

    Article  PubMed  Google Scholar 

  • He F, Xiong W, Yu X, Espinoza-Lewis R, Liu C, Gu S, Nishita M, Suzuki K, Yamada G, Minami Y, Chen Y (2008) Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 135:3871–3879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He F, Popkie AP, Xiong W, Li L, Wang Y, Phiel CJ, Chen Y (2010) Gsk3beta is required in the epithelium for palatal elevation in mice. Dev Dyn 239:3235–3246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hilliard SA, Yu L, Gu S, Zhang Z, Chen YP (2005) Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. J Anat 207:655–667

    Article  PubMed Central  PubMed  Google Scholar 

  • Hynes RO (1999) The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc Natl Acad Sci U S A 96:2588–2590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JM, Kim JY, Cho KW, Lee MJ, Cho SW, Kwak S, Cai J, Jung HS (2008) Wnt11/Fgfr1b cross-talk modulates the fate of cells in palate development. Dev Biol 314:341–350

    Article  CAS  PubMed  Google Scholar 

  • Leong MC, Vedula SR, Lim CT, Ladoux B (2013) Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun Integr Biol 6:e23197

    Article  PubMed Central  PubMed  Google Scholar 

  • Li A, Ma Y, Yu X, Mort RL, Lindsay CR, Stevenson D, Strathdee D, Insall RH, Chernoff J, Snapper SB, Jackson IJ, Larue L, Sansom OJ, Machesky LM (2011) Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell 21:722–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng L, Bian Z, Torensma R, Von den Hoff JW (2009) Biological mechanisms in palatogenesis and cleft palate. J Dent Res 88:22–33

    Article  CAS  PubMed  Google Scholar 

  • Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  • Parada C, Chai Y (2012) Roles of BMP signaling pathway in lip and palate development. Front Oral biol 16:60–70

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3.pii:a005041

    Google Scholar 

  • Silver MH, Foidart JM, Pratt RM (1981) Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation 18:141–149

    Article  CAS  PubMed  Google Scholar 

  • Sohn WJ, Yamamoto H, Shin HI, Ryoo ZY, Lee S, Bae YC, Jung HS, Kim JY (2011) Importance of region-specific epithelial rearrangements in mouse rugae development. Cell Tissue Res 344:271–277

    Article  PubMed  Google Scholar 

  • Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT (2000) Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151:29–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf ZT, Leslie EJ, Arzi B, Jayashankar K, Karmi N, Jia Z, Rowland DJ, Young A, Safra N, Sliskovic S, Murray JC, Wade CM, Bannasch DL (2014) A LINE-1 insertion in DLX6 is responsible for cleft palate and mandibular abnormalities in a canine model of Pierre Robin sequence. PLoS Genet 10:e1004257

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu K, Ornitz DM (2011) Histomorphological study of palatal shelf elevation during murine secondary palate formation. Dev Dyn 240:1737–1744

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Min Lee or Han-Sung Jung.

Additional information

Qinghuang Tang and Liwen Li contributed equally to this work. Jong-Min Lee and Han-Sung Jung contributed equally as corresponding authors.

This work was supported under the framework of an international cooperation program managed by the National Research Foundation of Korea (NRF-616-2011-3-E00014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Li, L., Jin, C. et al. Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation. Cell Tissue Res 361, 857–868 (2015). https://doi.org/10.1007/s00441-015-2169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2169-9

Keywords

Navigation