Skip to main content

Advertisement

Log in

Uniaxial repetitive mechanical overloading induces influx of extracellular calcium and cytoskeleton disruption in human tenocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tendon calcification is common in the Achilles tendon, and injuries affect not only athletes, but also the general population. However, the underlying cellular mechanisms are not yet fully understood. In this study, we isolated healthy human tenocytes and subjected them to uniaxial mechanical stretching (at 1.0 Hz) for various stretch times (4 h, 8 h, 12 h) or magnitudes (0 %, 4 %, 8 %, 12 %). The extracellular calcium chelator EGTA, calcium channel inhibitor MnCl2, nifedipine, or various doses of exogenous calcium were administered to these cells with or without mechanical overloading. The intracellular calcium concentration was determined by using a Fluo-3/AM fluorescence probe, and the cytoskeleton was revealed by F-actin Phalloidin staining. The intracellular calcium concentration increased in a magnitude- and time-dependent manner following stretching. These increases were suppressed by EGTA, MnCl2, or nifedipine. Additionally, cytoskeleton F-actin was disrupted significantly by stretching in a time-dependent manner. When extracellular calcium was applied, the intracellular calcium concentration increased, and F-actin was disrupted dramatically under mechanical stretching compared with non-stretched cells. Thus, repetitive mechanical overloading induces the accumulation of abnormally high concentrations of intracellular calcium resulting from extracellular calcium influx mediated, at least in part, by membrane calcium channels and finally causes cytoskeleton disorganization and tenocyte dysfunction. These findings provide novel experimental evidence for the pathology of tendon calcification and indicate that the blockade of calcium influx is a potential target for the prevention and treatment of calcific tendinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bjur D, Danielson P, Alfredson H, Forsgren S (2008) Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy). Cell Tissue Res 331:385–400

    Article  PubMed  Google Scholar 

  • Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y (2006) In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng 12:1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Chao YH, Tsuang YH, Sun JS, Chen LT, Chiang YF, Wang CC, Chen MH (2008) Effects of shock waves on tenocyte proliferation and extracellular matrix metabolism. Ultrasound Med Biol 34:841–852

    Article  PubMed  Google Scholar 

  • Crockett RJ, Centrella M, McCarthy TL, Grant Thomson J (2010) Effects of cyclic strain on rat tail tenocytes. Mol Biol Rep 37:2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45:38–54

    Article  CAS  PubMed  Google Scholar 

  • Endlich N, Sunohara M, Nietfeld W, Wolski EW, Schiwek D, Kranzlin B, Gretz N, Kriz W, Eickhoff H, Endlich K (2002) Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J 16:1850–1852

    CAS  PubMed  Google Scholar 

  • Geiger RC, Taylor W, Glucksberg MR, Dean DA (2006) Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther 13:725–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman J, Zhong L, Liu SQ (2003) Degradation of alpha-actin filaments in venous smooth muscle cells in response to mechanical stretch. Am J Physiol Heart Circ Physiol 284:H1839–H1847

    CAS  PubMed  Google Scholar 

  • Hayabuchi Y, Nakaya Y, Mawatari K, Inoue M, Sakata M, Kagami S (2011) Cell membrane stretch activates intermediate-conductance Ca2+−activated K+ channels in arterial smooth muscle cells. Heart Vessel 26:91–100

    Article  Google Scholar 

  • Kilinc D, Gallo G, Barbee KA (2009) Mechanical membrane injury induces axonal beading through localized activation of calpain. Exp Neurol 219:553–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  CAS  PubMed  Google Scholar 

  • Koo SS, Parsley BK, Burkhart SS, Schoolfield JD (2011) Reduction of postoperative stiffness after arthroscopic rotator cuff repair: results of a customized physical therapy regimen based on risk factors for stiffness. Arthroscopy 27:155–160

    Article  PubMed  Google Scholar 

  • Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G (2009) Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 296:G833–G839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Yang G, Khan M, Stone D, Woo SL, Wang JH (2004) Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am J Sports Med 32:435–440

    Article  CAS  PubMed  Google Scholar 

  • Lozupone E, Favia A, Grimaldi A (1992) Effect of intermittent mechanical force on bone tissue in vitro: preliminary results. J Bone Miner Res 7:S407–S409

    Article  PubMed  Google Scholar 

  • Lu L, Oswald SJ, Ngu H, Yin FC (2008) Mechanical properties of actin stress fibers in living cells. Biophys J 95:6060–6071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magra M, Hughes S, El Haj AJ, Maffulli N (2007) VOCCs and TREK-1 ion channel expression in human tenocytes. Am J Physiol Cell Physiol 292:C1053–C1060

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Wakayama Y, Sugai Y, Kagaya Y, Watanabe J, Keurs HE ter, Shirato K (2001) Effect of transient stretch on intracellular Ca2+ during triggered propagated contractions in intact trabeculae. Can J Physiol Pharmacol 79:68–72

  • Mohanty MJ, Li X (2002) Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel. Am J Physiol Cell Physiol 283:C456–C462

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TY, Iwata Y, Sampaolesi M, Hanada H, Saito N, Artman M, Coetzee WA, Shigekawa M (2001) Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. Am J Physiol Cell Physiol 281:C690–C699

    CAS  PubMed  Google Scholar 

  • Oh KJ, Yoon JR, Shin DS, Yang JH (2010) Extracorporeal shock wave therapy for calcific tendinitis at unusual sites around the hip. Orthopedics 33:769

    PubMed  Google Scholar 

  • Oliva F, Via AG, Maffulli N (2011) Calcific tendinopathy of the rotator cuff tendons. Sports Med Arthrosc 19:237–243

    Article  PubMed  Google Scholar 

  • Oliva F, Via AG, Maffulli N (2012) Physiopathology of intratendinous calcific deposition. BMC Med 10:95

    Article  PubMed Central  PubMed  Google Scholar 

  • Pauly S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, Wildemann B (2010) Characterization of tendon cell cultures of the human rotator cuff. Eur Cell Mater 20:84–97

    CAS  PubMed  Google Scholar 

  • Qi MC, Hu J, Zou SJ, Han LC, Luo E (2005) The changes of cytoskeleton F-actin in rat bone marrow mesenchymal stem cells and calvarial osteoblasts under mechanical strain. Hua Xi Kou Qiang Yi Xue Za Zhi 23:110–112, 121 [in Chinese]

  • Ren Y, Zhan Q, Hu Q, Sun B, Yang C, Wang C (2009) Static stretch induces active morphological remodeling and functional impairment of alveolar epithelial cells. Respiration 78:301–311

    Article  PubMed  Google Scholar 

  • Rui YF, Lui PP, Chan LS, Chan KM, Fu SC, Li G (2011) Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? Am J Chin Med 124:606–610

    Google Scholar 

  • Ruwhof C, Laarse A van der (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

  • Sabeti-Aschraf M, Gonano C, Nemecek E, Cichocki L, Schueller-Weidekamm C (2010) Intra-operative ultrasound facilitates the localization of the calcific deposit during arthroscopic treatment of calcifying tendinitis. Knee Surg Sports Traumatol Arthrosc 18:1792–1794

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Tanzil G, Mobasheri A, Clegg PD, Sendzik J, John T, Shakibaei M (2004) Cultivation of human tenocytes in high-density culture. Histochem Cell Biol 122:219–228

    Article  CAS  PubMed  Google Scholar 

  • Siegal DS, Wu JS, Newman JS, Del Cura JL, Hochman MG (2009) Calcific tendinitis: a pictorial review. Can Assoc Radiol J 60:263–272

    Article  PubMed  Google Scholar 

  • Simpson DG, Sharp WW, Borg TK, Price RL, Terracio L, Samarel AM (1996) Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure. Am J Physiol 270:C1075–C1087

    CAS  PubMed  Google Scholar 

  • Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43:9–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Thampatty BP, Im HJ, Wang JH (2006) Leukotriene B4 at low dosage negates the catabolic effect of prostaglandin E2 in human patellar tendon fibroblasts. Gene 372:103–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thampatty BP, Li H, Im HJ, Wang JH (2007) EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1 beta treatment. Gene 386:154–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vico L, Lafage-Proust MH, Alexandre C (1998) Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22:95S–100S

    Article  CAS  PubMed  Google Scholar 

  • Wall ME, Banes AJ (2005) Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Nueronal Interact 5:70–84

    CAS  Google Scholar 

  • Wang JH (2006) Mechanobiology of tendon. J Biomech 39:1563–1582

    Article  PubMed  Google Scholar 

  • Wang JH, Jia F, Gilbert TW, Woo SL (2003a) Cell orientation determines the alignment of cell-produced collagenous matrix. J Biomech 36:97–102

    Article  PubMed  Google Scholar 

  • Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, Woo SL (2003b) Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res 44:128–133

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Yang G, Li Z, Shen W (2004) Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. J Biomech 37:573–576

    Article  PubMed  Google Scholar 

  • Wang JH, Yang G, Li Z (2005) Controlling cell responses to cyclic mechanical stretching. Ann Biomed Eng 33:337–342

    Article  PubMed  Google Scholar 

  • Wang JH, Iosifidis MI, Fu FH (2006) Biomechanical basis for tendinopathy. Clin Orthop Relat Res 443:320–332

    Article  PubMed  Google Scholar 

  • Wei B, Chen Z, Zhang X, Feldman M, Dong XZ, Doran R, Zhao BL, Yin WX, Kotlikoff MI, Ji G (2008) Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle. PLoS One 3:e2526

    Article  PubMed Central  PubMed  Google Scholar 

  • Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, Ding Y (2012) L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 424:439–445

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Liu W, Cao DJ, ZhaiI HL, Wei X, Cui L, Cao YL (2004) Comparison of types I and III collagen expression in human tendon and skin as well as tynocytes and dermal fibroblasts. Acta Univ Med Secondae Shanghai 24:275–278

    CAS  Google Scholar 

  • Yang G, Im HJ, Wang JH (2005) Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 363:166–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang BT, Yeung SS, Allen DG, Qin L, Yeung EW (2008) Role of the calcium-calpain pathway in cytoskeletal damage after eccentric contractions. J Appl Physiol 105:352–357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The microgroove silicon membrane was kindly provided by Dr. James H.-C. Wang (University of Pittsburgh, USA) who also strictly supervised the custom-made controlling apparatus. We are grateful to Dr. Kaifa Wang (Third Military Medical University, Chongqing, China) for kind assistance with the statistical analysis and to Yang Xiang (Central Laboratory of Southwest Hospital, Chongqing, China) for the collection and measurement of the morphological data from confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqiang Zhang or Kanglai Tang.

Additional information

Wan Chen and Yinshuan Deng contributed equally to this study.

This work was supported by the Natural Science Foundation of China (81230040, 30872620, and 81071464) and Chongqing Science and Technology Committee (CSTC2011BA5010).

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material Figure S1

The uniaxial cyclic mechanical stretching device with the microgroove silicon membrane system. a The cyclic mechanical stretch device. b This device is set at 4%, 8%, and 12% magnitude (two dishes each) at 1.0 Hz or 0.5 Hz. c The tension unit. d The device in an incubator. (GIF 178 kb)

High Resolution Image (TIFF 2573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Deng, Y., Zhang, J. et al. Uniaxial repetitive mechanical overloading induces influx of extracellular calcium and cytoskeleton disruption in human tenocytes. Cell Tissue Res 359, 577–587 (2015). https://doi.org/10.1007/s00441-014-2018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2018-2

Keywords

Navigation