Skip to main content

Advertisement

Log in

Bone regeneration in a rabbit ulna defect model: use of allogeneic adipose-derivedstem cells with low immunogenicity

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tissue engineering provides new potential treatments for the repair of bone defects. Bone-marrow-derived mesenchymal stem cells (BMSCs) represent an attractive cell source for therapeutic applications involving tissue engineering, although disadvantages, such as pain of harvest and low proliferation efficiency, are major limitations to the application of BMSCs in the clinic. Adipose-derived stem cells (ASCs) with their multilineage potential and satisfactory proliferation potential can be induced into the osteogenic lineage in vitro and can be anchored onto suitable scaffolds as seed cells to repair bone defects successfully in an autologous setting. Previous studies have indicated that both undifferentiated BMSCs and ASCs exhibit immunosuppression and immunoprivilege properties. We compare the immuno-function of undifferentiated and osteo-differentiated ASCs in vitro and explore the feasibility of applying allogeneic ASCs to the repair of ulnar bone defects in the rabbit model. Our study demonstrates that allogeneic osteogenic differentiated ASCs maintain low immunogenicity and negative immunomodulation. The allogeneic osteogenic differentiated ASCs combined with demineralized bone matrix successfully regenerate ulnar bone defects in rabbits without immunosuppressive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschmann J, Gao S, Härter L, Hemmi S, Welti M, Werner CM, Calcagni M, Cinelli P, Wanner GA (2013) Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site—increasing the yield by use of adherent and supernatant fractions? Cytotherapy 15:1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Castillo M, Liu K, Bonilla L, Rameshwar P (2007) The immune properties of mesenchymal stem cells. Int J Biomed Sci 3:76–80

    PubMed  PubMed Central  Google Scholar 

  • Colson YL, Tripp RA, Doherty PC, Wren SM, Neipp M, Abou El-Ezz AY, Ildstad ST (1998) Antiviral cytotoxic activity across a species barrier in mixed xenogeneic chimeras: functional restriction to host MHC. J Immunol 160:3790–3796

    PubMed  CAS  Google Scholar 

  • Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y (2007a) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28:5477–5486

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y (2007b) Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 13:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Ding DC, Chou HL, Hung WT, Liu HW, Chu TY (2013) Human adipose-derived stem cells cultured in keratinocyte serum free medium: donor’s age does not affect the proliferation and differentiation capacities. J Biomed Sci 20:59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154

    Article  PubMed  CAS  Google Scholar 

  • Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO (2012) Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 64:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Guo F, Zhou X, Gong L, Zhang Y, Zhai W, Chen L, Cen L, Yin S, Chang J, Cui L (2011) The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials 32:7023–7033

    Article  PubMed  CAS  Google Scholar 

  • Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 55:309–318

    Article  PubMed  CAS  Google Scholar 

  • Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489

    Article  PubMed  Google Scholar 

  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    Article  PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Götherström C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringdén O (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60:307–315

    Article  PubMed  Google Scholar 

  • Liu G, Zhang Y, Liu B, Sun J, Li W, Cui L (2013) Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 34:2655–2664

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Kemeny DM, Heng BC, Ouyang HW, Melendez AJ, Cao T (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 176:2864–2871

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y, Cui L (2009) The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng Part A 15:3487–3497

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H (2009) Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch 76:56–66

    Article  PubMed  Google Scholar 

  • Niemeyer P, Kornacker M, Mehlhorn A, Seckinger A, Vohrer J, Schmal H, Kasten P, Eckstein V, Südkamp NP, Krause U (2007) Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng 13:111–121

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev 17:389–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren ML, Peng W, Yang ZL, Sun XJ, Zhang SC, Wang ZG, Zhang B (2012) Allogeneic adipose-derived stem cells with low immunogenicity constructing tissue-engineered bone for repairing bone defects in pigs. Cell Transplant 21:2711–2721

    Article  PubMed  Google Scholar 

  • Shegarfi H, Reikeras O (2009) Review article: bone transplantation and immune response. J Orthop Surg (Hong Kong) 17:206–211

    Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, Jin A (2013) Comparison of mesenchymal stem cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 15:434–448

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangzao Li or Chen Wang.

Additional information

Huijie Gu and Zhuyou Xiong contributed equally to this work.

This work was financially supported by the Natural Science Foundation of China (grant nos. 81201204, 81301335) and the Education Department of Anhui Province Natural Science Research Project (grant no. KJ2010A239).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Xiong, Z., Yin, X. et al. Bone regeneration in a rabbit ulna defect model: use of allogeneic adipose-derivedstem cells with low immunogenicity. Cell Tissue Res 358, 453–464 (2014). https://doi.org/10.1007/s00441-014-1952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1952-3

Keywords

Navigation