Skip to main content

Advertisement

Log in

Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The ubiquitin-proteasome system (UPS) controls intracellular protein turnover in a substrate-specific manner via E3-type ubiquitin ligases. Mammalian fertilization and particularly sperm penetration through the oocyte vitelline coat, the zona pellucida (ZP), is regulated by UPS. We use an extrinsic substrate of the proteasome-dependent ubiquitin-fusion degradation pathway, the mutant ubiquitin UBB+1, to provide evidence that an E3-type ligase activity exists in sperm-acrosomal fractions. Protein electrophoresis gels from such de novo ubiquitination experiments contained a unique protein band identified by tandem mass spectrometry as being similar to ubiquitin ligase UBR7 (alternative name: C14ORF130). Corresponding mRNA was amplified from boar testis and several variants of the UBR7 protein were detected in boar, mouse and human sperm extracts by Western blotting. Genomic analysis indicated a high degree of evolutionary conservation, remarkably constant purifying selection and conserved testis expression of the UBR7 gene. By immunofluorescence, UBR7 was localized to the spermatid acrosomal cap and sperm acrosome, in addition to hotspots of proteasomal activity in spermatids, such as the cytoplasmic lobe, caudal manchette, nucleus and centrosome. During fertilization, UBR7 remained with the ZP-bound acrosomal shroud following acrosomal exocytosis. Thus, UBR7 is present in the acrosomal cap of round spermatids and within the acrosomal matrix of mature boar spermatozoa. These data provide the first evidence of ubiquitin ligase activity in mammalian spermatozoa and indicate UBR7 involvement in spermiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aa:

Amino acid

ATP:

Adenosine triphosphate

CLBL:

Clasto-lactacystin-β-lactone (specific proteasomal inhibitor)

DMSO:

Dimethyl sulfoxide (vehicle solution)

Epox:

Epoxomicin (specific proteasomal inhibitor)

EtOH:

Ethyl alcohol, ethanol (vehicle solution)

EST:

Expressed sequence tag

GST tag:

Glutathione S-transferase tag

LCAP:

Linear combination of amino acid properties

LRT:

Likelihood ratio test

MG132:

N-(benzyloxycarbonyl)leucinylleucinylleucinal ( Z-Leu-Leu-Leu-al;specific proteasomal inhibitor)

MS/MS:

Tandem mass spectrometry

PCR:

Polymerase chain reaction

UBA1:

Ubiquitin-activating enzyme E1

UBAL:

Ubiquitin-aldehyde (specific inhibitor of ubiquitin-C-terminal hydrolases)

UBB:

Ubiquitin B

UBB+1 :

Mutant frame-shifted ubiquitin B protein

UPS:

Ubiquitin-proteasome system

VC:

Vitelline coat

ZP:

Zona pellucida

ZPP:

Zona pellucida protein (solubilized)

References

  • Abeydeera LR, Wang WH, Prather RS, Day BN (1998) Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol Reprod 58:1316–1320

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped Blast and Psi-Blast : a new-generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT (2006) Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A 103:6212–6217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardag-Gorce F, van Leeuwen FW, Nguyen V, French BA, Li J, Riley N, McPhaul LW, Lue YH, French SW (2002) The role of the ubiquitin-proteasome pathway in the formation of Mallory bodies. Exp Mol Pathol 73:75–83

    Article  CAS  PubMed  Google Scholar 

  • Bardag-Gorce F, Riley N, Nguyen V, Montgomery RO, French BA, Li J, van Leeuwen FW, Lungo W, McPhaul LW, French SW (2003) The mechanism of cytokeratin aggresome formation: the role of mutant ubiquitin (UBB+1). Exp Mol Pathol 74:160–167

    Article  CAS  PubMed  Google Scholar 

  • Bedard N, Yang Y, Gregory M, Cyr DG, Suzuki J, Yu X, Chian RC, Hermo L, O’Flaherty C, Smith CE et al (2011) Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod 85:594–604

    Article  CAS  PubMed  Google Scholar 

  • Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, Song HK (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17:1175–1181

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Conant GC (2009) Neutral evolution on mammalian protein surfaces. Trends Genet 25:377–381

    Article  CAS  PubMed  Google Scholar 

  • Conant GC, Wagner GP, Stadler PF (2007) Modeling amino acid substitution patterns in orthologous and paralogous genes. Mol Phylogenet Evol 42:298–307

    Article  CAS  PubMed  Google Scholar 

  • Fischer DF, De Vos RA, Van Dijk R, De Vrij FM, Proper EA, Sonnemans MA, Verhage MC, Sluijs JA, Hobo B, Zouambia M et al (2003) Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J 17:2014–2024

    Article  CAS  PubMed  Google Scholar 

  • Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S et al (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fong GH, Takeda K (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 15:635–641

    Article  CAS  PubMed  Google Scholar 

  • Furukawa M, Ohta T, Xiong Y (2002) Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J Biol Chem 277:15758–15765

    Article  CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  • Goldman N (1993) Statistical tests of models of DNA substitution. J Mol Evol 36:182–198

    Article  CAS  PubMed  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hedges SB, Kumar S (2009) The timetree of life. Oxford University Press, Oxford

    Google Scholar 

  • Hedges SB, Poling LL (1999) A molecular phylogeny of reptiles. Science 283:998–1001

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Huo LJ, Fan HY, Zhong ZS, Chen DY, Schatten H, Sun QY (2004) Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech Dev 121:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J, Franci C, Huang B, Huang J, Yam GC et al (2005) Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell 16:5621–5629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karabinova P, Kubelka M, Susor A (2011) Proteasomal degradation of ubiquitinated proteins in oocyte meiosis and fertilization in mammals. Cell Tissue Res 346:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kessler R, Hausmann G, Basler K (2009) The PHD domain is required to link Drosophila Pygopus to Legless/beta-catenin and not to histone H3. Mech Dev 126:752–759

    Article  CAS  PubMed  Google Scholar 

  • Krawiec BJ, Nystrom GJ, Frost RA, Jefferson LS, Lang CH (2007) AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am J Physiol Endocrinol Metab 292:E1555–E1567

    Article  CAS  PubMed  Google Scholar 

  • Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA, Varshavsky A (1998) The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl Acad Sci U S A 95:7898–7903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MJ, Pal K, Tasaki T, Roy S, Jiang Y, An JY, Banerjee R, Kwon YT (2008) Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc Natl Acad Sci U S A 105:100–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, Hingamp P, Lefrancois S, Combaret L, Wing SS (2000) Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Mol Cell Biol 20:6568–6578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marygold SJ, Leyland PC, Seal RL, Goodman JL, Thurmond J, Strelets VB, Wilson RJ (2013) FlyBase: improvements to the bibliography. Nucleic Acids Res 41:D751–D757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miles EL, O’Gorman C, Zhao J, Samuel M, Walters E, Yi YJ, Sutovsky M, Prather RS, Wells KD, Sutovsky P (2013) Transgenic pig carrying green fluorescent proteasomes. Proc Natl Acad Sci U S A 110:6334–6339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morales P, Overstreet JW, Katz DF (1988) Changes in human sperm motion during capacitation in vitro. J Reprod Fertil 83:119–128

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Diaz ES, Kong M (2007) Proteasome activity and its relationship with protein phosphorylation during capacitation and acrosome reaction in human spermatozoa. Soc Reprod Fertil Suppl 65:269–273

    CAS  PubMed  Google Scholar 

  • Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Oppermann FS, Grundner-Culemann K, Kumar C, Gruss OJ, Jallepalli PV, Daub H (2012) Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets. Mol Cell Proteomics 11:012351

    Article  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Poulsen EG, Steinhauer C, Lees M, Lauridsen AM, Ellgaard L, Hartmann-Petersen R (2012) HUWE1 and TRIP12 collaborate in degradation of ubiquitin-fusion proteins and misframed ubiquitin. PLoS One 7:e50548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivkin E, Kierszenbaum AL, Gil M, Tres LL (2009) Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the head-tail coupling apparatus during rat spermatid development. Dev Dyn 238:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez R, Deppe M, Schulz M, Bravo P, Villegas J, Morales P, Risopatron J (2011) Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia 43:114–120

    Article  CAS  PubMed  Google Scholar 

  • Sasanami T, Sugiura K, Tokumoto T, Yoshizaki N, Dohra H, Nishio S, Mizushima S, Hiyama G, Matsuda T (2012) Sperm proteasome degrades egg envelope glycoprotein ZP1 during fertilization of Japanese quail (Coturnix japonica). Reproduction 144:423–431

    Article  CAS  PubMed  Google Scholar 

  • Sawada H (2002) Ascidian sperm lysin system. Zool Sci 19:139–151

    Article  CAS  PubMed  Google Scholar 

  • Sawada H, Sakai N, Abe Y, Tanaka E, Takahashi Y, Fujino J, Kodama E, Takizawa S, Yokosawa H (2002) Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor. Proc Natl Acad Sci U S A 99:1223–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shabek N, Herman-Bachinsky Y, Ciechanover A (2009) Ubiquitin degradation with its substrate, or as a monomer in a ubiquitination-independent mode, provides clues to proteasome regulation. Proc Natl Acad Sci U S A 106:11907–11912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sriram SM, Kim BY, Kwon YT (2011) The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 12:735–747

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P (2003) Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61:88–102

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P, Manandhar G, McCauley TC, Caamano JN, Sutovsky M, Thompson WE, Day BN (2004) Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biol Reprod 71:1625–1637

    Article  CAS  PubMed  Google Scholar 

  • Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, Muesing M, Kwon YT (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 25:7120–7136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tasaki T, Sohr R, Xia Z, Hellweg R, Hortnagl H, Varshavsky A, Kwon YT (2007) Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J Biol Chem 282:18510–18520

    Article  CAS  PubMed  Google Scholar 

  • Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT (2009) The substrate recognition domains of the N-end rule pathway. J Biol Chem 284:1884–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udeshi ND, Mertins P, Svinkina T, Carr SA (2013a) Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc 8:1950–1960

    Article  CAS  PubMed  Google Scholar 

  • Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA (2013b) Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 12:825–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ et al (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247

    Article  PubMed  Google Scholar 

  • van Tijn P, de Vrij FM, Schuurman KG, Dantuma NP, Fischer DF, van Leeuwen FW, Hol EM (2007) Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease. J Cell Sci 120:1615–1623

    Article  PubMed  Google Scholar 

  • Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV (2012) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res 41:D358–D365

    Article  PubMed Central  PubMed  Google Scholar 

  • Wing SS, Bedard N, Morales C, Hingamp P, Trasler J (1996) A novel rat homolog of the Saccharomyces cerevisiae ubiquitin-conjugating enzymes UBC4 and UBC5 with distinct biochemical features is induced during spermatogenesis. Mol Cell Biol 16:4064–4072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    Article  CAS  PubMed  Google Scholar 

  • Yi YJ, Manandhar G, Sutovsky M, Jonáková V, Park CS, Sutovsky P (2010a) Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro. J Reprod Immunol 84:154–163

    Article  CAS  PubMed  Google Scholar 

  • Yi YJ, Manandhar G, Sutovsky M, Zimmerman SW, Jonáková V, van Leeuwen FW, Oko R, Park CS, Sutovsky P (2010b) Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm-zona pellucida penetration during porcine fertilization. Cell Tissue Res 341:325–340

    Article  CAS  PubMed  Google Scholar 

  • Yi YJ, Zimmerman SW, Manandhar G, Odhiambo JF, Kennedy C, Jonáková V, Manaskova-Postlerova P, Sutovsky M, Park CS, Sutovsky P (2012) Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. Int J Androl 35:196-210

    Article  CAS  PubMed  Google Scholar 

  • Yokota N, Sawada H (2007) Sperm proteasomes are responsible for the acrosome reaction and sperm penetration of the vitelline envelope during fertilization of the sea urchin Pseudocentrotus depressus. Dev Biol 308:222–231

    Article  CAS  PubMed  Google Scholar 

  • Yokota N, Harada Y, Sawada H (2010) Identification of testis-specific ubiquitin-conjugating enzyme in the ascidian Ciona intestinalis. Mol Reprod Dev 77:640–647

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S (2002) Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66:112–119

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SW, Manandhar G, Yi YJ, Gupta SK, Sutovsky M, Odhiambo JF, Powell MD, Miller DJ, Sutovsky P (2011) Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS One 6:e17256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kiho Lee and Dr. Randall Prather for providing the mRNA samples for PCR analysis from boar testis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sutovsky.

Additional information

This work was supported by National Research Initiative Competitive Grant no. 2011-67015-20025 from the USDA National Institute of Food and Agriculture and by the Food for the 21st Century Program of the University of Missouri-Columbia (to P.S.). F.W.V.L. was supported by ISAO (grant nos. 06502 and 09514).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, S.W., Yi, YJ., Sutovsky, M. et al. Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa. Cell Tissue Res 356, 261–278 (2014). https://doi.org/10.1007/s00441-014-1808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1808-x

Keywords

Navigation