Skip to main content

Advertisement

Log in

Isolation, characterization and differentiation of cells expressing pluripotent/multipotent markers from adult human ovaries

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pluripotent stem cells are still generally accepted not to exist in adult human ovaries, although increasing studies confirm the presence of pluripotent/multipotent stem cells in adult mammalian ovaries, including those of humans. The aim of this study is to isolate, characterize and differentiate in vitro stem cells that originate from the adult human ovarian cortex and that express markers of pluripotency/multipotency. After enzymatic degradation of small ovarian cortex biopsies retrieved from 18 women, ovarian cell cultures were successfully established from 17 and the formation of cell colonies was observed. The presence of cells/colonies expressing some markers of pluripotency (alkaline phosphatase, surface antigen SSEA-4, OCT4, SOX-2, NANOG, LIN28, STELLA), germinal lineage (DDX4/VASA) and multipotency (M-CAM/CD146, Thy-1/CD90, STRO-1) was confirmed by various methods. Stem cells from the cultures, including small round SSEA-4-positive cells with diameters of up to 4 μm, showed a relatively high degree of plasticity. We were able to differentiate them in vitro into various types of somatic cells of all three germ layers. However, these cells did not form teratoma when injected into immunodeficient mice. Our results thus show that ovarian tissue is a potential source of stem cells with a pluripotent/multipotent character for safe application in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed N, Thompsona EW, Quinn MA (2007) Epithelial-mesenchymal interconversion in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213:581–588

    Article  PubMed  CAS  Google Scholar 

  • Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF (2009) Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics 2:71

    Article  PubMed  Google Scholar 

  • Bukovsky A, Svetlikova M, Caudle MR (2005) Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 3:17

    Article  PubMed  Google Scholar 

  • Byskov AG, Lintern-Moore S (1973) Follicle formation in the immature mouse ovary: the role of the rete ovarii. J Anat 116:207–217

    PubMed  CAS  Google Scholar 

  • Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  PubMed  CAS  Google Scholar 

  • Gong SP, Lee ST, Lee EJ, Kim DY, Lee G, Chi SG, Ryu BK, Lee CH, Yum KE, Lee HJ, Han JY, Tilly JL, Lim JM (2010) Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril 93:2594–2601

    Article  PubMed  Google Scholar 

  • Gonzalez R, Griparic L, Vargas V, Burgee K, Santacruz P, Anderson R, Schiewe M, Silva F, Patel A (2009) A putative mesenchymal stem cells population isolated from adult human testes. Biochem Biophys Res Commun 385:570–575

    Article  PubMed  CAS  Google Scholar 

  • Gu TT, Liu SY, Zheng PS (2012) Cytoplasmic NANOG-positive stromal cells promote human cervical cancer progression. Am J Pathol 181:652–661

    Article  PubMed  CAS  Google Scholar 

  • Gullberg M, Gústafsdóttir SM, Schallmeiner E, Jarvius J, Bjarnegård M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci USA 101:8420–8424

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Hirose M, Hara K, Matoba S, Inoue K, Miki H, Hiura H, Kanatsu-Shinohara M, Kanai Y, Kono T, Shinohara T, Ogura A (2007) Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci USA 104:12389–12394

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Cho HH, Cho YB, Park JS, Jeong HS (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11:25

    Article  PubMed  Google Scholar 

  • Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H (2009) The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells 27:210–219

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4(+) stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Nabeshima Y, Fujiyoshi Y, Dezawa M (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Okamoto A, Nikaido T, Saito M, Takao M, Yanaihara N, Takakura S, Ochiai K, Tanaka T (2009) Mesenchymal to epithelial transition in the human ovarian surface epithelium focusing on inclusion cysts. Oncol Rep 21:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Pacchiarotti J, Maki C, Ramos T, Marh J, Howerton K, Wong J, Pham J, Anorve S, Chow YC, Izadyar F (2010) Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation 79:159–170

    Article  PubMed  CAS  Google Scholar 

  • Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M, Karbicka A, Nowik M, Nowacki P, Ratajczak MZ, Machalinski B (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, Hinduja I (2011) Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20:1451–1464

    Article  PubMed  CAS  Google Scholar 

  • Peters H, Pedersen T (1967) Origin of follicle cells in the infant mouse ovary. Fertil Steril 18:309–313

    PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Zuba-Surma EK, Shin DM, Ratajczak J, Kucia M (2008) Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol 43:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev Rep 5:378–386

    Article  CAS  Google Scholar 

  • Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J (2004) Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22:265–274

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, Kucia M (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 23:2042–2051

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M, Ratajczak MZ (2010) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24:1450–1461

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ, Kucia M (2012) Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev 21:1639–1652

    Article  PubMed  CAS  Google Scholar 

  • Stimpfel M, Skutella T, Kubista M, Malicev E, Conrad S, Virant-Klun I (2012) Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. J Biomed Biotechnol 2012:291038

    Article  PubMed  Google Scholar 

  • Sun XY, Nong J, Qin K, Warnock GL, Dai LJ (2011) Mesenchymal stem cell-mediated cancer therapy: a dual-targeted strategy of personalized medicine. World J Stem Cells 3:96–103

    Article  PubMed  Google Scholar 

  • Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R, Lo Celso C, Dombkowski D, Preffer F, Cohen KS, Teixeira J, Donahoe PK (2008) Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci USA 105:12469–12473

    Article  PubMed  CAS  Google Scholar 

  • Trubiani O, Zalzal SF, Paganelli R, Marchisio M, Giancola R, Pizzicannella J, Bühring HJ, Piattelli M, Caputi S, Nanci A (2010) Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and Frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol 225:123–131

    Article  PubMed  CAS  Google Scholar 

  • Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, Malicev E, Meden-Vrtovec H (2008) Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76:843–856

    Article  PubMed  CAS  Google Scholar 

  • Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rülicke T, Dovc P, Meden-Vrtovec H (2009) Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 18:137–149, Erratum in: Stem Cells Dev 18:1109

    Article  PubMed  CAS  Google Scholar 

  • Virant-Klun I, Skutella T, Stimpfel M, Sinkovec J (2011) Ovarian surface epithelium in patients with severe ovarian infertility: a potential source of cells expressing markers of pluripotent/multipotent stem cells. J Biomed Biotechnol 2011:381928

    Article  PubMed  Google Scholar 

  • Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A, Sinkovec J (2013) Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int 2013:690415

    PubMed  Google Scholar 

  • White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL (2012) Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 18:413–421

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zheng W, Shen Y, Adhikari D, Ueno H, Liu K (2012) Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci USA 109:12580–12585

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Nilsson M, Sundfeldt K (2010) Phenotypic plasticity of the ovarian surface epithelium: TGF-beta 1 induction of epithelial to mesenchymal transition (EMT) in vitro. Endocrinology 151:5497–5505

    Article  PubMed  CAS  Google Scholar 

  • Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J (2009) Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11:631–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all patients who kindly donated their ovarian tissue for this research and are also grateful to Dr. Elvira Malicev and Prof. Primoz Rozman from the Blood Transfusion Center Ljubljana for flow-cytometry analyses and the FACS service, to Prof. Gregor Sersa from the Institute of Oncology Ljubljana for providing IGROV-1 and the melanoma cell line, to Prof. Rok Romih from the Institute of Cell Biology, Medical Faculty, University of Ljubljana for transmission electron microscopy of cell colonies, to Dr. Natasa Toplak from Omega for the TaqMan Protein Expression Assays, to Sabine Conrad, MTA from the University of Tübingen, Germany for technical assistance with the Fluidigm analyses, to Dr. Lenart Girandon from Educell for providing adipogenic induction medium, Oil Red O solution and silver nitrate solution and to all the other people and institutions supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Virant-Klun.

Additional information

Martin Stimpfel and Irma Virant-Klun contributed equally to this work.

The authors state that they have no competing financial interests.

This study was supported by the Slovenian Research Agency (grant J3-0415 to I.V.-K.) and by the German Federal Ministry of Education and Research (grant 01GN1001 to T.S.).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Ovarian stem cell cultures positively stained on mesenchymal stem cell markers. a M-CAM. b Thy-1. c STRO-1. d Negative control (CD 14). e Negative control (CD 19). Bar 100 μm (JPEG 21 kb)

High resolution image (TIFF 896 kb)

Supplementary Fig. S2

Positive staining of mesenchymal-like stem cells for the expression of markers of pluripotency, namely OCT-4, SSEA-4, SOX-2 and NANOG, as revealed by immunofluorescence. a OCT-4-positive cells. b Nuclei stained with DAPI. c Merged image of a, b. d SSEA-4-positive cells. e Nuclei stained with DAPI. f Merged image of d, e. g SOX-2-positive cells. h Nuclei stained with DAPI. i Merged image of g, h. j NANOG-positive cells. k Nuclei stained with DAPI. l Merged image of j, k. Bar 100 μm (JPEG 32 kb)

High resolution image (TIFF 1734 kb)

Supplementary Fig. S3

Amplification plot showing expression of telomerase (TERT telomerase reverse transcriptase) in samples of ovarian stem cells (T1 ovarian stem cells, T2 putative ovarian stem cells in 2-week-old culture, T3 human embryonic stem cells [H1 line], T4 putative ovarian stem cells in 7-month-old culture, gapdh glyceraldehyde 3-phoshate dehydrogenase) (JPEG 53 kb)

High resolution image (TIFF 1399 kb)

Supplementary Fig. S4

Western blot analysis in ovarian cell cultures developed without primary antibody on hESCs. Membrane was probed with secondary antibody only. Immunoreactive protein corresponded to upper band at around 75 kDa and was non-specific (JPEG 7 kb)

High resolution image (TIFF 1930 kb)

Supplementary Fig. S5

Teratoma formation in SCID (severe combined immunodeficiency) mice after transplantation of ovarian cancer and melanoma cells (positive controls) (JPEG 27 kb)

High resolution image (TIFF 1286 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stimpfel, M., Skutella, T., Cvjeticanin, B. et al. Isolation, characterization and differentiation of cells expressing pluripotent/multipotent markers from adult human ovaries. Cell Tissue Res 354, 593–607 (2013). https://doi.org/10.1007/s00441-013-1677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1677-8

Keywords

Navigation