Skip to main content
Log in

Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Cav) channels. As the types of Cav channels used by this part of the enteric nervous system are unknown, the expression of various Cav subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Cav1.2, Cav1.3 and Cav2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Cav channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca2+-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca2+-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped with various types of high-voltage activated Cav channels and with IP3 receptors for intracellular Ca2+ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avemary J, Diener M (2010a) Effects of bradykinin B2 receptor stimulation at submucosal ganglia from rat distal colon. Eur J Pharmacol 627:295–303

    Article  PubMed  CAS  Google Scholar 

  • Avemary J, Diener M (2010b) Bradykinin-induced depolarization and Ca2+ influx through voltage-gated Ca2+ channels in rat submucosal neurons. Eur J Pharmacol 635:87–95

    Article  PubMed  CAS  Google Scholar 

  • Barbado M, Fablet K, Ronjat M, De Waard M (2009) Gene regulation by voltage-dependent calcium channels. Biochim Biophys Acta 1793:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Bkaily G, Avedanian L, Jacques D (2009) Nuclear membrane receptors and channels as targets for drug development in cardiovascular diseases. Can J Physiol Pharmacol 87:108–119

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Takeda J, Janssen H, Seino S, Bell GI (1993) Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem 268:11356–11363

    PubMed  CAS  Google Scholar 

  • Bödding M (2001) Histamine-induced Ca2+ release in bovine adrenal chromaffin cells. Naunyn-Schmiedeberg’s Arch Pharmacol 364:508–515

    Article  Google Scholar 

  • Bringmann A, Schopf S, Reichenbach A (2000) Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells. J Neurophysiol 84:2975–2983

    PubMed  CAS  Google Scholar 

  • Cai W, Hisatsune C, Nakamura K, Nakamura T, Inoue T, Mikoshiba K (2004) Activity-dependent expression of inositol 1,4,5-trisphosphate receptor type 1 in hippocampal neurons. J Biol Chem 279:23691–23698

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  PubMed  CAS  Google Scholar 

  • Choi JY, Beaman-Hall CM, Vallano ML (2004) Granule neurons in cerebellum express distinct splice variants of the inositol trisphosphate receptor that are modulated by calcium. Am J Physiol 287:C971–C980

    Article  CAS  Google Scholar 

  • Franklin JL, Willard AL (1993) Voltage-dependent sodium and calcium currents of rat myenteric neurons in cell culture. J Neurophysiol 69:1264–1275

    PubMed  CAS  Google Scholar 

  • García-Palomero E, Cuchillo-Ibáñez I, García A, Renart J, Albillos A, Montiel C (2000) Greater diversity than previously thought of chromaffin cell Ca2+ channels, derived from mRNA identification studies. FEBS Lett 481:235–239

    Article  PubMed  Google Scholar 

  • Harris RA, Hanrahan JW (1993) Histamine stimulates a biphasic calcium response in the human tracheal epithelial cell line CF/T43. Am J Physiol 265:C781–C791

    PubMed  CAS  Google Scholar 

  • Haschke G, Schäfer KH, Diener M (2002) Effect of butyrate on membrane potential, ionic currents and intracellular Ca2+-concentration in cultured rat myenteric neurons. Neurogastroenterol Motil 14:133–142

    Article  PubMed  CAS  Google Scholar 

  • Kim MB, Lee SH, Shim WS, Oh U (2004) Histamine-induced Ca2+ influx via the PLA2/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci Lett 361:159–162

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner AL, Liu MT (1999) Differential localization of Ca2+ channel α1 subunits in the enteric nervous system: presence of α1B channel-like immunoreactivity in intrinsic primary afferent neurons. J Comp Neurol 409:85–104

    Article  PubMed  CAS  Google Scholar 

  • Kocks S, Schultheiss G, Diener M (2002) Ryanodine receptors and the mediation of Ca2+-dependent anion secretion across rat colon. Pflügers Arch Eur J Physiol 445:390–397

    Article  CAS  Google Scholar 

  • Köhler R, Brakemeier S, Kühn M, Degenhardt C, Buhr H, Pries A, Hoyer J (2001) Expression of ryanodine receptor type 3 and TRP channels in endothelial cells: comparison of in situ and cultured human endothelial cells. Cardiovasc Res 51:160–168

    Article  PubMed  Google Scholar 

  • Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM (2006) C-termini of P/Q-type Ca2.1 channel α1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 15:1587–1599

    Article  PubMed  CAS  Google Scholar 

  • Kruglov EA, Gautam S, Guerra MT, Nathanson MH (2011) Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology 54:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Li CH (2008) A reliable whole cell clamp technique. Adv Physiol Educ 32:209–211

    Article  PubMed  Google Scholar 

  • Lin Z, Sandgren K, Ekblad E (2004) Increased expression of nitric oxide synthase in cultured neurons from adult rat colonic submucous ganglia. Auton Neurosci 114:29–38

    Article  PubMed  CAS  Google Scholar 

  • Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JH, Farrugia G (2002) α1C (CaV1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 283:C1001–C1008

    Article  PubMed  CAS  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba M (1997) 2-APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505

    Article  PubMed  CAS  Google Scholar 

  • McPherson PS, Campbell KP (1993) Characterization of the major brain form of the ryanodine receptor/Ca2+ release channel. J Biol Chem 268:19785–19790

    PubMed  CAS  Google Scholar 

  • Mikoshiba K (2006) Inositol 1,4,5-trisphosphate (IP3) receptors and their role in neuronal cell function. J Neurochem 97:1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Motagally MA, Neshat S, Lomax AE (2009) Inhibition of sympathetic N-type voltage-gated Ca2+ current underlies the reduction in norepinephrine release during colitis. Am J Physiol 296:G1077–G1084

    CAS  Google Scholar 

  • Nahm SS, Farnell YZ, Griffith W, Earnest DJ (2005) Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. J Neurosci 25:9304–9308

    Article  PubMed  CAS  Google Scholar 

  • Newton CL, Mignery GA, Sudhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619

    PubMed  CAS  Google Scholar 

  • Pierobon N, Renard-Rooney DC, Gaspers LD, Thomas AP (2006) Ryanodine receptors in liver. J Biol Chem 281:34086–34095

    Article  PubMed  CAS  Google Scholar 

  • Prinz G, Diener M (2008) Characterization of ryanodine receptors in rat colonic epithelium. Acta Physiol 193:151–162

    Article  CAS  Google Scholar 

  • Rehn M, Hübschle T, Diener M (2004) TNF-alpha hyperpolarizes membrane potential and potentiates the response to nicotinic receptor stimulation in cultured rat myenteric neurons. Acta Physiol Scand 181:13–22

    Article  PubMed  CAS  Google Scholar 

  • Sharp AH, Nucifora FC Jr, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406:207–220

    Article  PubMed  CAS  Google Scholar 

  • Siefjediers A, Hardt M, Prinz G, Diener M (2007) Characterization of inositol 1,4,5-trisphosphate (IP3) receptor subtypes at rat colonic epithelium. Cell Calcium 41:303–315

    Article  PubMed  CAS  Google Scholar 

  • Sitmo M, Rehn M, Diener M (2007) Stimulation of voltage-dependent Ca2+ channels by NO at rat myenteric neurons. Am J Physiol Gastrointest Liver Physiol 293:G886–G893

    Article  PubMed  CAS  Google Scholar 

  • Smyth LM, Yamboliev IA, Mutafova-Yambolieva VN (2009) N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and β-NAD in blood vessels. Neuropharmacology 56:368–378

    Article  PubMed  CAS  Google Scholar 

  • Stephens GJ, Morris NP, Fyffe REW, Robertson B (2001) The Cav2.1/α1A (P/Q- type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur J Neurosci 13:1902–1912

    Article  PubMed  CAS  Google Scholar 

  • Stutzmann GE, Mattson MP (2011) Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacol Rev 63:700–727

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signalling in glia cells. Trends Neurosci 19:346–352

    Article  PubMed  CAS  Google Scholar 

  • Vinet J, Sík A (2006) Expression pattern of voltage-dependent calcium channel subunits in hippocampal inhibitory neurons in mice. Neuroscience 143:189–212

    Article  PubMed  CAS  Google Scholar 

  • Wood JD (1997) Physiology of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract, vol 1, 3rd edn. Raven, New York, pp 67–109

    Google Scholar 

  • Xu JH, Long L, Wang J, Tang YC, Hu HT, Soong TW, Tang FR (2010) Nuclear localization of Cav2.2 and its distribution in the mouse central nervous system, and changes in the hippocampus during and after pilocarpine-induced status epilepticus. Neuropathol Appl Neurobiol 36:71–85

    Article  PubMed  Google Scholar 

  • Yang S, Huang XY (2005) Ca2+ influx through L-type Ca2+ channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. J Biol Chem 280:27130–27137

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Sukiasyan N, Møller M, Bezprozvanny I, Zhang H, Wienecke J, Hultborn H (2006) Localization of L-type calcium channel Cav1.3 in cat lumbar spinal cord—with emphasis on motoneurons. Neurosci Lett 407:42–47

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Diener.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (grant Di 388/13-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehn, M., Bader, S., Bell, A. et al. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon. Cell Tissue Res 353, 355–366 (2013). https://doi.org/10.1007/s00441-013-1643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1643-5

Keywords

Navigation