Skip to main content

Advertisement

Log in

A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient’s psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search for remedies, prevention of the disease and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia, a task that inevitably involves behavioural tests with animals. To a novice, this challenge not only is a technical one but also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience of diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction and early life developmental manipulations. The review pays equal emphasis to the general (theoretical) considerations of experimental design and the illustration of the problems related to critical test parameters and the data analysis of selected exemplar behavioural tests. Finally, the individual differences of behavioural expression in relevant tests observed in wild-type animals might offer an alternative approach in order to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels, all of which are of more immediate relevance to cell and tissue research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel KM, Drake R, Goldstein JM (2010) Sex differences in schizophrenia. Int Rev Psychiatry 22:417–428

    Article  PubMed  Google Scholar 

  • Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (4th edn). American Psychiatric Association, Washington DC

    Google Scholar 

  • Andreasen NC, Olsen S (1982) Negative vs positive schizophrenia. Arch Gen Psychiatry 39:789–794

    Article  PubMed  CAS  Google Scholar 

  • Arguello PA, Markx S, Gogos JA, Karayiorgou M (2010) Development of animal models of schizophrenia. Dis Model Mech 3:22–26

    Article  PubMed  CAS  Google Scholar 

  • Astur RS, Tropp J, Sava S, Constable RT, Markus EJ (2004) Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behav Brain Res 151:103–115

    Article  PubMed  Google Scholar 

  • Baddeley A (1986) Working memory. Clarendon, Oxford

    Google Scholar 

  • Baddeley A (1992) Working memory. Science 255:556–559

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Dalley JW, Robbins TW (2008) The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc 3:759–767

    Article  PubMed  CAS  Google Scholar 

  • Barkus C, Feyder M, Graybeal C, Wright T, Wiedholz L, Izquierdo A, Kiselycznyk C, Schmitt W, Sanderson DJ, Rawlins JN, Saksida LM, Bussey TJ, Sprengel R, Bannerman D, Holmes A (2012) Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62:1263–1272

    Article  PubMed  CAS  Google Scholar 

  • Baruch I, Hemsley DR, Gray JA (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 176:598–606

    Article  PubMed  CAS  Google Scholar 

  • Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 33:543–548

    Article  PubMed  CAS  Google Scholar 

  • Belizário JE, Akamini P, Wolf P, Strauss B, Xavier-Neto J (2012) New routes for transgenesis of the mouse. J Appl Genet 53:295–315

    Article  PubMed  CAS  Google Scholar 

  • Ben Abdallah NM, Fuss J, Trusel M, Galsworthy MJ, Bobsin K, Colacicco G, Deacon RM, Riva MA, Kellendonk C, Sprengel R, Lipp HP, Gass P (2011) The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia. Exp Neurol 227:42–52

    Article  PubMed  Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (2000) Taste reactivity: measuring hedonic impact in human infants and animals. Neurosci Biobehav Rev 24:173–198

    Article  PubMed  CAS  Google Scholar 

  • Berrios GE (1985) Positive and negative symptoms and Jackson: a conceptual history. Arch Gen Psychiatry 42:95–97

    Article  PubMed  CAS  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    PubMed  CAS  Google Scholar 

  • Bitanihirwe BK, Dubroqua S, Singer P, Feldon J, Yee BK (2011) Sensorimotor gating and vigilance-dependent choice accuracy: a within-subject correlative analysis in wild-type C57BL/6 mice. Behav Brain Res 217:178–187

    Article  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58

    Article  PubMed  CAS  Google Scholar 

  • Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2:51–61

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 16:425–432

    Article  PubMed  CAS  Google Scholar 

  • Castagné V, Moser PC, Porsolt RD (2009) Preclinical behavioral models for predicting antipsychotic activity. Adv Pharmacol 57:381–418

    Article  PubMed  Google Scholar 

  • Champagne F, Meaney MJ (2001) Like mother, like daughter: evidence for non-genomic transmission of parental behavior and stress responsivity. Prog Brain Res 133:287–302

    Article  PubMed  CAS  Google Scholar 

  • Chao OY, Pum ME, Huston JP (2013) The interaction between the dopaminergic forebrain projections and the medial prefrontal cortex is critical for memory of objects: implications for Parkinson’s disease. Exp Neurol (in press)

  • Chemero A, Heyser CJ (2005) Object exploration and a problem with reductionism. Synthese 17:403–423

    Article  Google Scholar 

  • Chindo BA, Adzu B, Yahaya TA, Gamaniel KS (2012) Ketamine-enhanced immobility in forced swim test: a possible animal model for the negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 38:310–316

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2004) Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 174:86–98

    Article  CAS  Google Scholar 

  • Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats after damage to the hippocampus. J Neurosci 20:8853–8860

    PubMed  CAS  Google Scholar 

  • Cole MR, Chappell-Stephenson R (2003) Exploring the limits of spatial memory using very large mazes. Learn Behav 31:349–368

    Article  PubMed  Google Scholar 

  • Coleman MJ, Cook S, Matthysse S, Barnard J, Lo Y, Levy DL, Rubin DB, Holzman PS (2002) Spatial and object working memory impairments in schizophrenia patients: a Bayesian item-response theory analysis. J Abnorm Psychol 111:425–435

    Article  PubMed  Google Scholar 

  • Coyle JT, Balu D, Benneyworth M, Basu A, Roseman A (2010) Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues Clin Neurosci 12:359–382

    PubMed  Google Scholar 

  • Crawley JN (2007a) Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 17:448–459

    Article  PubMed  Google Scholar 

  • Crawley JN (2007b) What’s wrong with my mouse. Wiley, Hoboken

    Book  Google Scholar 

  • Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23:63–74

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swim test. Neurosci Biobehav Rev 29:547–568

    Article  PubMed  CAS  Google Scholar 

  • Csomor PA, Yee BK, Quednow BB, Stadler RR, Feldon J, Vollenweider FX (2006) The monotonic dependency of prepulse inhibition of the acoustic startle reflex on the intensity of the startle eliciting stimulus. Behav Brain Res 174:143–150

    Article  PubMed  Google Scholar 

  • Csomor PA, Yee BK, Vollenweider FX, Feldon J, Nicolet T, Quednow BB (2008) On the influence of baseline startle reactivity on the indexation of prepulse inhibition. Behav Neurosci 122:885–900

    Article  PubMed  Google Scholar 

  • Deacon RM, Rawlins JN (2002) Learning impairments of hippocampal-lesioned mice in a paddling pool. Behav Neurosci 116:472–478

    Article  PubMed  Google Scholar 

  • Deacon RM, Rawlins JNP (2006) T-maze alternation in the rodent. Nat Protoc 1:7–12

    Article  PubMed  Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mutant models for genes associated with schizophrenia. Biochem Soc Trans 37:308–312

    Article  PubMed  CAS  Google Scholar 

  • Dillon GM, Shelton D, McKinney AP, Caniga M, Marcus JN, Ferguson MT, Kornecook TJ, Dodart JC (2009) Prefrontal cortex lesions and scopolamine impair attention performance of C57BL/6 mice in a novel 2-choice visual discrimination task. Behav Brain Res 204:67–76

    Article  PubMed  CAS  Google Scholar 

  • Dubroqua S, Serrano L, Boison D, Feldon J, Gargiulo PA, Yee BK (2012) Intact working memory in the absence of forebrain neuronal glycine transporter 1. Behav Brain Res 230:208–214

    Article  PubMed  CAS  Google Scholar 

  • Dudchenko PA (2004) An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev 28:699–709

    Article  PubMed  Google Scholar 

  • Engin E, Treit D, Dickson CT (2009) Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 161:359–369

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1. Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Farber NB (2003) The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci 1003:119–130

    Article  PubMed  CAS  Google Scholar 

  • File SE, Hyde JR (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62:19–24

    Article  PubMed  CAS  Google Scholar 

  • Frith CD (1992) The cognitive neuropsychology of schizophrenia. Essays in cognitive psychology series. Lawrence Earlbarm Associates, Hove

    Google Scholar 

  • Gabrovska VS, Laws KR, Sinclair J, McKenna PJ (2003) Visual object processing in schizophrenia: evidence for an associative agnostic deficit. Schizophr Res 59:277–286

    Article  PubMed  Google Scholar 

  • Geyer MA (2006) Are cross-species measures of sensorimotor gating useful for the discovery of procognitive cotreatments for schizophrenia? Dialogues Clin Neurosci 8:9–16

    PubMed  Google Scholar 

  • Geyer MA (2008) Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res 14:71–78

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull 13:643–668

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Gross G (eds) (2012) Novel antischizophrenia treatments. Handbook of experimental pharmacology, vol 213. Springer, Berlin

    Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Goldberg TE, Bigelow LB, Weinberger DR, Daniel DG, Kleinman JE (1991) Cognitive and behavioral effects of the coadministration of dextroamphetamine and haloperidol in schizophrenia. Am J Psychiatry 148:78–84

    PubMed  CAS  Google Scholar 

  • Gothelf D, Soreni N, Nachman RP, Tyano S, Hiss Y, Reiner O, Weizman A (2000) Evidence for the involvement of the hippocampus in the pathophysiology of schizophrenia. Eur Neuropsychopharmacol 10:389–395

    Article  PubMed  CAS  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Res 14:1–84

    Google Scholar 

  • Gray NS, Pickering AD, Hemsley DR, Dawling S, Gray JA (1992) Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology (Berl) 107:425–430

    Article  CAS  Google Scholar 

  • Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184:31–38

    Article  PubMed  CAS  Google Scholar 

  • Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S, Fenton WS, Frese F, Goldberg TE, Heaton RK, Keefe RS, Kern RS, Kraemer H, Stover E, Weinberger DR, Zalcman S, Marder SR (2004) Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 56:301–307

    Article  PubMed  Google Scholar 

  • Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82:26–34

    Article  PubMed  Google Scholar 

  • Henry BL, Minassian A, Young JW, Paulus MP, Geyer MA, Perry W (2010) Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev 34:1296–1306

    Article  PubMed  Google Scholar 

  • Henry BL, Minassian A, van Rhenen M, Young JW, Geyer MA, Perry W, Translational Methamphetamine AIDS Research Center (TMARC) Group (2011) Effect of methamphetamine dependence on inhibitory deficits in a novel human open-field paradigm. Psychopharmacology (Berl) 215:697–707

    Article  CAS  Google Scholar 

  • Heyser CJ, Chemero A (2012) Novel object exploration in mice: not all objects are created equal. Behav Process 89:232–238

    Article  Google Scholar 

  • Hodges H, Sowinski P, Fleming P, Kershaw TR, Sinden JD, Meldrum BS, Gray JA (1996) Contrasting effects of fetal CA1 and CA3 hippocampal grafts on deficits in spatial learning and working memory induced by global cerebral ischaemia in rats. Neuroscience 72:959–988

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HS, Searle JL (1965) Acoustic variables in the modification of startle reaction in the rat. J Comp Physiol Psychol 60:53–58

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HS, Searle JL (1968) Acoustic and temporal factors in the evocation of startle. J Acoust Soc Am 43:269–282

    Article  PubMed  CAS  Google Scholar 

  • Honey RC, Good M (2000) Associative components of recognition memory. Curr Opin Neurobiol 10:200–204

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Jarrard LE (1986) Selective hippocampal lesions and behavior: implications for current research and theorizing. In: Isaascon RL, Pribram KH (eds) The hippocampus, vol 4. Plenum, New York

    Google Scholar 

  • Javitt DC (2010) Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 47:4–16

    PubMed  Google Scholar 

  • Jia P, Sun J, Guo AY, Zhao Z (2010) SZGR: a comprehensive schizophrenia gene resource. Mol Psychiatry 15:453–462

    Article  PubMed  CAS  Google Scholar 

  • Karasawa J, Hashimoto K, Chaki S (2008) D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res 186:78–83

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Farnsworth G, DiMattia BV (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behav Neurosci 103:956–961

    Article  PubMed  CAS  Google Scholar 

  • Kim AM, Tingen CM, Woodruff TK (2010) Sex bias in trials and treatment must end. Nature 465:688–689

    Article  PubMed  CAS  Google Scholar 

  • Kos CH (2004) Cre/loxP system for generating tissue-specific knockout mouse models. Nutr Rev 62:243–246

    PubMed  Google Scholar 

  • Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    Article  PubMed  CAS  Google Scholar 

  • Leavitt VM, Goldberg TE (2009) Episodic memory in schizophrenia. Neuropsychol Rev 19:312–323

    Article  PubMed  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Liddle PF, Friston KJ, Frith CD, Jones T, Hirsch SR, Frackowiak RSJ (1992) Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry 160:179–186

    Article  PubMed  CAS  Google Scholar 

  • Llano Lopez L, Hauser J, Feldon J, Gargiulo PA, Yee BK (2010) Evaluating spatial memory function in mice: a within-subjects comparison between the water maze test and its adaptation to dry land. Behav Brain Res 209:85–92

    Article  PubMed  CAS  Google Scholar 

  • Lubow RE, Moore AU (1959) Latent inhibition: the effect of nonreinforced preexposure to the conditional stimulus. J Comp Physiol Psychol 52:415–419

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh NJ (1973) Stimulus selection: learning to ignore stimuli that predict no change in reinforcement. In: Hinde RA, Stevenson-Hinde J (eds) Constraints on learning. Academic Press, London, pp 75–96

    Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J (2009) Prenatal exposure to infection: a primary mechanism for abnormal dopaminergic development in schizophrenia. Psychopharmacology (Berl) 206:587–602

    Article  CAS  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913–947

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    Article  PubMed  CAS  Google Scholar 

  • Minassian A, Henry BL, Geyer MA, Paulus MP, Young JW, Perry W (2010) The quantitative assessment of motor activity in mania and schizophrenia. J Affect Disord 120:200–206

    Article  PubMed  Google Scholar 

  • Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    Article  PubMed  CAS  Google Scholar 

  • Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Genes Brain Behav 3:303–314

    Article  PubMed  CAS  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P (ed) (2011) Animal models of schizophrenia and related disorders. Springer, New York

    Google Scholar 

  • Ogren SO, Archer T (1994) Effects of typical and atypical antipsychotic drugs on two-way active avoidance: relationship to DA receptor blocking profile. Psychopharmacology (Berl) 114:383–391

    Article  CAS  Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116

    Article  Google Scholar 

  • Owen MJ (2012) Implications of genetic findings for understanding schizophrenia. Schizophr Bull 38:904–907

    Article  PubMed  Google Scholar 

  • Papaleo F, Lipska BK, Weinberger DR (2012) Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62:1204–1220

    Article  PubMed  CAS  Google Scholar 

  • Parasuraman R (1998) The attentive brain. MIT Press, Mass.

    Google Scholar 

  • Parwani A, Duncan EJ, Bartlett E, Madonick SH, Efferen TR, Rajan R, Sanfilipo M, Chappell PB, Chakravorty S, Gonzenbach S, Ko GN, Rotrosen JP (2000) Impaired prepulse inhibition of acoustic startle in schizophrenia. Biol Psychiatry 47:662–669

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Janssen MC, Loos M, Smit AB, Schoffelmeer AN, van Gaalen MM (2007) Strain specificity and cholinergic modulation of visuospatial attention in three inbred mouse strains. Genes Brain Behav 6:579–587

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Hauser J, Lopez LH, Feldon J, Gargiulo PA, Yee BK (2013) Baseline prepulse inhibition expression predicts the propensity of developing sensitization to the motor stimulant effects of amphetamine in C57BL/6 mice. Psychopharmacology 225:341–352

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080

    Article  PubMed  Google Scholar 

  • Piper M, Beneyto M, Burne TH, Eyles DW, Lewis DA, McGrath JJ (2012) The neurodevelopmental hypothesis of schizophrenia: convergent clues from epidemiology and neuropathology. Psychiatr Clin North Am 35:571–584

    Article  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    Article  PubMed  CAS  Google Scholar 

  • Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146

    Article  PubMed  Google Scholar 

  • Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney FK, Wilson DA, Wu CF, Thompson RF (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92:135–138

    Article  PubMed  Google Scholar 

  • Robbins TW (1996) Dissociating executive functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    Article  CAS  Google Scholar 

  • Robertson GS, Hori SE, Powell KJ (2006) Schizophrenia: an integrative approach to modelling a complex disorder. J Psychiatry Neurosci 31:157–167

    PubMed  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Russel WMS, Burch RL (1959) The principles of humane experimental technique. http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc

  • Saeedi H, Remington G, Christensen BK (2006) Impact of haloperidol, a dopamine D2 antagonist, on cognition and mood. Schizophr Res 85:222–231

    Article  PubMed  Google Scholar 

  • Sanderson DJ, Bannerman DM (2012) The role of habituation in hippocampus-dependent spatial working memory tasks: evidence from GluA1 AMPA receptor subunit knockout mice. Hippocampus 22:981–994

    Article  PubMed  CAS  Google Scholar 

  • Sanderson DJ, Gray A, Simon A, Taylor AM, Deacon RM, Seeburg PH, Sprengel R, Good MA, Rawlins JN, Bannerman DM (2007) Deletion of glutamate receptor-A (GluR-A) AMPA receptor subunits impairs one-trial spatial memory. Behav Neurosci 121:559–569

    Article  PubMed  CAS  Google Scholar 

  • Sanderson DJ, McHugh SB, Good MA, Sprengel R, Seeburg PH, Rawlins JN, Bannerman DM (2010) Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: evidence for Wagner’s dual-process memory model. Neuropsychologia 48:2303–2315

    Article  PubMed  Google Scholar 

  • Schwendt M, Sigmon SA, McGinty JF (2012) RGS4 overexpression in the rat dorsal striatum modulates mGluR5- and amphetamine-mediated behavior and signaling. Psychopharmacology (Berl) 221:621–635

    Article  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2011) All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Ther 17:118–132

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  • Seligman ME (1972) Learned helplessness. Annu Rev Med 23:407–412

    Article  PubMed  CAS  Google Scholar 

  • Shen HY, Singer P, Lytle N, Wei CJ, Lan JQ, Williams-Karnesky RL, Chen JF, Yee BK, Boison D (2012) Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 122:2567–2577

    Article  PubMed  CAS  Google Scholar 

  • Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ (2012) Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev 36:1342–1356

    Article  PubMed  Google Scholar 

  • Shipman SL, Baker EK, Pearlson G, Astur RS (2009) Absence of established sex differences in patients with schizophrenia on a two-dimensional object array task. Psychiatry Res 166:158–165

    Article  PubMed  Google Scholar 

  • Singer P, Yee BK (2012) Reversal of scopolamine-induced disruption of prepulse inhibition by clozapine in mice. Pharmacol Biochem Behav 101:107–114

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Boison D, Möhler H, Feldon J, Yee BK (2007) Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons. Behav Neurosci 121:815–825

    Article  PubMed  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009a) Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology (Berl) 206:677–698

    Article  CAS  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009b) Interactions between the glycine transporter 1(GlyT1) inhibitor SSR504734 and psychoactive drugs in mouse motor behaviour. Eur Neuropsychopharmacol 19:571–580

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Boison D, Möhler H, Feldon J, Yee BK (2011) Modulation of sensorimotor gating in prepulse inhibition by conditional brain glycine transporter 1 deletion in mice. Eur Neuropsychopharmacol 21:401–413

    Article  PubMed  CAS  Google Scholar 

  • Singer P, McGarrity S, Shen HY, Boison D, Yee BK (2012) Working memory and the homeostatic control of brain adenosine by adenosine kinase. Neuroscience 213:81–92

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Hauser J, Lopez LL, Peleg-Raibstein D, Feldon J, Gargiulo PA, Yee BK (2013) Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice. Behav Brain Res 242:166–177

    Article  PubMed  Google Scholar 

  • Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124:1720–1733

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133:197–202

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer M (1999) Cross-species studies of sensorimotor gating of the startle reflex. Ann N Y Acad Sci 29:202–216

    Article  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388

    Article  CAS  Google Scholar 

  • Tai CT, Clark AJ, Feldon J, Rawlins JN (1991) Electrolytic lesions of the nucleus accumbens in rats which abolish the PREE enhance the locomotor response to amphetamine. Exp Brain Res 86:333–340

    Article  PubMed  CAS  Google Scholar 

  • Tarantino IS, Sharp RF, Geyer MA, Meves JM, Young JW (2011) Working memory span capacity improved by a D2 but not D1 receptor family agonist. Behav Brain Res 219:181–188

    Article  PubMed  CAS  Google Scholar 

  • Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43

    Article  PubMed  CAS  Google Scholar 

  • Thorndike EL (1911) Animal intelligence. Macmillan, New York

    Google Scholar 

  • Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed  Google Scholar 

  • Tyson PJ, Laws KR, Roberts KH, Mortimer AM (2004) Stability of set-shifting and planning abilities in patients with schizophrenia. Psychiatry Res 129:229–239

    Article  PubMed  Google Scholar 

  • Van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270

    Article  PubMed  Google Scholar 

  • Van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5:11

    Article  PubMed  Google Scholar 

  • Van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies. PLoS Med 7:e1000245

    Article  PubMed  Google Scholar 

  • Vardigan JD, Huszar SL, McNaughton CH, Hutson PH, Uslaner JM (2010) MK-801 produces a deficit in sucrose preference that is reversed by clozapine, D-serine, and the metabotropic glutamate 5 receptor positive allosteric modulator CDPPB: relevance to negative symptoms associated with schizophrenia? Pharmacol Biochem Behav 95:223–229

    Article  PubMed  CAS  Google Scholar 

  • Volavka J, Cooper TB, Czobor P, Meisner M (1996) Effect of varying haloperidol plasma levels on negative symptoms in schizophrenia and schizoaffective disorder. Psychopharmacol Bull 32:75–79

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF (1996) Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol 351:1495–1503

    Article  CAS  Google Scholar 

  • Weiner I (1990) Neural substrates of latent inhibition: the switching model. Psychol Bull 108:442–461

    Article  PubMed  CAS  Google Scholar 

  • Weiner I (2001) Latent inhibition. Curr Protoc Neurosci Chapter 8:Unit 8.13

    PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169:257–297

    Article  CAS  Google Scholar 

  • Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204:369–386

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30:871–878

    Article  PubMed  CAS  Google Scholar 

  • Weiss IC, Feldon J (2001) Environmental animal models for sensorimotor gating deficiencies in schizophrenia: a review. Psychopharmacology (Berl) 156:305–326

    Article  CAS  Google Scholar 

  • Wenk GL (2004) Assessment of spatial memory using the radial arm maze and Morris water maze. Curr Protoc Neurosci Chapter 8:Unit 8.5A

    PubMed  Google Scholar 

  • Willner P, Papp M, Phillips G, Maleeh M, Muscat R (1990) Pimozide does not impair sweetness discrimination. Psychopharmacology (Berlin) 102:278–282

    Article  CAS  Google Scholar 

  • Wu YC, Hill RA, Gogos A, Buuse M van den (2012) Sex differences and the role of estrogen in animal models of schizophrenia: interaction with BDNF. Neuroscience (in press)

  • Yanagi M, Southcott S, Lister J, Tamminga CA (2012) Animal models of schizophrenia emphasizing construct validity. Prog Mol Biol Transl Sci 105:411–444

    Article  PubMed  CAS  Google Scholar 

  • Yates JW, Meij JT, Sullivan JR, Richtand NM, Yu L (2007) Bimodal effect of amphetamine on motor behaviors in C57BL/6 mice. Neurosci Lett 427:66–70

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Feldon J (2009) Distinct forms of prepulse inhibition disruption distinguishable by the associated changes in prepulse-elicited reaction. Behav Brain Res 204:387–395

    Article  PubMed  Google Scholar 

  • Yee BK, Chang DL, Feldon J (2004a) The effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29:1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Russig H, Feldon J (2004b) Apomorphine-induced prepulse inhibition disruption is associated with a paradoxical enhancement of prepulse stimulus reactivity. Neuropsychopharmacology 29:240–248

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Chang T, Pietropaolo S, Feldon J (2005) The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res 163:265–276

    Article  PubMed  Google Scholar 

  • Young JW, Minassian A, Paulus MP, Geyer MA, Perry W (2007) A reverse-translational approach to bipolar disorder: rodent and human studies in the behavioral pattern monitor. Neurosci Biobehav Rev 31:882–896

    Article  PubMed  Google Scholar 

  • Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122:150–202

    Article  PubMed  CAS  Google Scholar 

  • Young JW, Amitai N, Geyer MA (2012) Behavioral animal models to assess pro-cognitive treatments for schizophrenia. Handb Exp Pharmacol 213:39–79

    Article  PubMed  Google Scholar 

  • Zhou M, Zhuang YL, Xu Q, Li YD, Shen Y (2004) VSD: a database for schizophrenia candidate genes focusing on variations. Hum Mutat 23:1–7

    Article  PubMed  CAS  Google Scholar 

  • Zhu SW, Yee BK, Nyffeler M, Winblad B, Feldon J, Mohammed AH (2006) Influence of differential housing on emotional behaviour and neurotrophin levels in mice. Behav Brain Res 169:10–20

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 13:121–128

    Article  PubMed  CAS  Google Scholar 

  • Zorrilla EP (1997) Multiparous species present problems (and possibilities) to developmentalists. Dev Psychobiol 30:141–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, B.K., Singer, P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res 354, 221–246 (2013). https://doi.org/10.1007/s00441-013-1611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1611-0

Keywords

Navigation