Skip to main content

Advertisement

Log in

Autocrine and paracrine interactions and neuroprotection in glaucoma

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Retinal ganglion cells represent the output neurons of the retina. They are responsible for integrating electrical signals that originate with the photoreceptors and, via their axons that comprise the optic nerve, transmit that information to higher visual centers of the brain. The retinal ganglion cells reside on the inner surface of the retina and their axons course across the inner surface to exit at the back of the eye through a region known as the optic nerve head. Within this region, initiation of the degenerative processes associated with glaucoma are thought to occur, leading to degeneration of not only the optic nerve but also the retinal ganglion cells themselves. Studies aimed at understanding the mechanisms behind glaucoma have identified diverse cellular components and molecular events that occur in response to nerve injury. The challenge to date has been to identify and promote pro-survival events while suppressing those that support further degradation and loss of vision. Complicating this process is the fact that the cells and molecules involved can play multiple roles. An understanding of the players and their complex relationships is central to the development of a successful treatment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal N, Agarwal R, Kumar DM, Ondricek A, Clark AF, Wordinger RJ, Pang I-H (2007) Comparison of expression profile of neurotrophins and their receptors in primary and transformed rat retinal ganglion cells. Mol Vis 13:1311–1318

    CAS  PubMed  Google Scholar 

  • Almasieh M, Wilson AM, Morquette B, Vargas JLC, DiPolo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181

    CAS  PubMed  Google Scholar 

  • Amendola T, Fiore M, Aloe L (2003) Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci Lett 345:37–40

    CAS  PubMed  Google Scholar 

  • Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol Vis Sci 13:771–783

    CAS  Google Scholar 

  • Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF (2010) Neuroprotection in glaucoma—is there a future role? Exp Eye Res 91:554–566

    CAS  PubMed  Google Scholar 

  • Barker PA, Shooter EM (1994) Disruption of NGF binding to the low affinity neurotphin receptor p75NTR reduces NGF binding to TrkA on PC12 cells. Neuron 13:203–215

    CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  • Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci 44:623–637

    PubMed  Google Scholar 

  • Bennett JL, Zeiler SR, Jones KR (1999) Patterned expression of BNDF and NT-3 in the retina and anterior segment of the developing mammalian eye. Invest Ophthalmol Vis Sci 40:2996–3005

    CAS  PubMed  Google Scholar 

  • Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160

    CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2001) Nitric oxide, mitochondria, and cell death. IUBMB Life 52:189–195

    CAS  PubMed  Google Scholar 

  • Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28:2735–2744

    CAS  PubMed  Google Scholar 

  • Burgoyne CF (2011) A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 93:120–132

    CAS  PubMed  Google Scholar 

  • Calkins DJ (2012) Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 32:1–18

    Google Scholar 

  • Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89

    CAS  PubMed  Google Scholar 

  • Carmignoto G, Comelli MC, Candeo P, Cavicchioli L, Yan Q, Merighi A, Maffei L (1991) Expression of NGF receptor and NGF receptor messenger RNA in the developing and adult rat retina. Exp Neurol 111:302–311

    CAS  PubMed  Google Scholar 

  • Carter-Dawson L, Crawford MLJ, Harwerth RS, Smith EL III, Feldman R, Shen FF, Mitchell CK, Whitetree A (2002) Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci 43:2633–2637

    PubMed  Google Scholar 

  • Carter-Dawson L, Shen FF, Harwerth RS, Crawford MLJ, Smith EL, Whitetree A (2004) Glutathione content is altered in Muller cells of monkey eyes with experimental glaucoma. Neurosci Lett 364:7–10

    CAS  PubMed  Google Scholar 

  • Cellerino A, Kohler K (1997) Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina. J Comp Neurol 386:149–160

    CAS  PubMed  Google Scholar 

  • Chaturvedi N, Hedleywhyte ET, Dreyer EB (1993) Lateral geniculate nucleus in glaucoma. Am J Ophthalmol 116:182–188

    CAS  PubMed  Google Scholar 

  • Chauhan B (2008) Endothelin and its potential role in glaucoma. Can J Ophthalmol 43:356–360

    PubMed  Google Scholar 

  • Chen C-T, Alyahya K, Gionfriddo JR, Dubielzig RR, Madl JE (2008) Loss of glutamine synthetase immunoreactivity from the retina in canine primary glaucoma. Vet Ophthalmol 11:150–157

    CAS  PubMed  Google Scholar 

  • Chen H, Weber AJ (2004) Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats. Brain Res 1011:99–106

    CAS  PubMed  Google Scholar 

  • Cheng L, Sapieha P, Kittlerova P, Hauswirth WW, Di Polo A (2002) TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 22:3977–3986

    CAS  PubMed  Google Scholar 

  • Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ (2010) Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci USA 107:5196–5201

    CAS  PubMed  Google Scholar 

  • Cui Q, Tang LS, Hu B, So K-F, Yip HK (2002) Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Invest Ophthalmol Vis Sci 43:1954–1964

    PubMed  Google Scholar 

  • Desai D, He S, Yorio T, Krishnamoorthy RR, Prasanna G (2004) Hypoxia augments TNF-alpha-mediated endothelin-1 release and cell proliferation in human optic nerve head astrocytes. Biochem Biophys Res Commun 318:642–648

    CAS  PubMed  Google Scholar 

  • Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    CAS  PubMed  Google Scholar 

  • Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305

    CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Fechtner RD, Weinreb RN (1994) Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol 39:23–42

    CAS  PubMed  Google Scholar 

  • Findl O, Strenn K, Wolzt M, Menapace R, Vass C, Eichler HG, Schmetterer L (1997) Effects of changes in intraocular pressure on human ocular haemodynamics. Curr Eye Res 16:1024–1029

    CAS  PubMed  Google Scholar 

  • Frank L, Ventimiglia R, Anderson K, Lindsay RM, Rudge JS (1996) BDNF down-regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons. Eur J Neurosci 8:1220–1230

    CAS  PubMed  Google Scholar 

  • Friedman DS, Wolfs RCW, O’Colmain BJ, Klein BE, Taylor HR, West S, Leske C, Mitchell P, Congdon N, Kempen J, Tielsch J (2004) Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 122:532–538

    PubMed  Google Scholar 

  • Gaasterland D, Tanishima T, Kuwabara T (1978) Axoplasmic flow during chronic experimental glaucoma. Part 1. Light microscopic and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci 17:838–846

    CAS  PubMed  Google Scholar 

  • Gao H, Qiao X, Hefti F, Hollyfield JG, Knusel B (1997) Elevated mRNA expression of brain-derived neurotrophic factor in retinal ganglion cell layer after optic nerve injury. Invest Ophthalmol Vis Sci 38:1840–1847

    CAS  PubMed  Google Scholar 

  • Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61:33–44

    CAS  PubMed  Google Scholar 

  • Gelatt KN, Mackay EO (1998) The ocular hypertensive effects of topical 0.1 percent dexamethasone in beagles with inherited glaucoma. J Ocular Pharm Ther 14:57–66

    CAS  Google Scholar 

  • Glaucoma Research Foundation (2012) Glaucoma facts and stats. http://www.glaucoma.org/glaucoma/ glaucoma-facts-and-stats.php

  • Good TJ, Kahook MY (2010) The role of endothelin in the pathophysiology of glaucoma. Exp Opin Ther Targets 14:647–654

    CAS  Google Scholar 

  • Guo Y, Johnson E, Cepurna W, Jia L, Dyck J, Morrison JC (2009) Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma? Exp Eye Res 89:921–933

    CAS  PubMed  Google Scholar 

  • Gupta N, Ang LC, Noel de Tilly L, Bidaisee L, Yucel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90:674–678

    CAS  PubMed  Google Scholar 

  • Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K (2002) Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22:9228–9236

    CAS  PubMed  Google Scholar 

  • Harada T, Harada C, Nakamura K, Quah H-MA, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    CAS  PubMed  Google Scholar 

  • Hare WA, WoldeMussie E, Lai RK, Ton H, Ruiz G, Chun T, Wheeler L (2004a) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey. I. Functional measures. Invest Ophthalmol Vis Sci 45:2625–2639

    PubMed  Google Scholar 

  • Hare WA, WoldeMussie E, Weinreb RN, Ton H, Ruiz G, Wijono M, Feldmann B, Zangwill L, Wheeler L (2004b) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey. II. Structural measures. Invest Ophthalmol Vis Sci 45:2640–2651

    PubMed  Google Scholar 

  • Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS (2011) Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 52:4506–4515

    CAS  PubMed  Google Scholar 

  • Hauck SM, Kinkl N, Deeg CA, Swiatek-de Lange M, Schoeffmann S, Ueffing M (2006) GDNF family ligands trigger indirect neuroprotective signaling in retinal glial cells. Mol Cell Biol 26:2746–2757

    CAS  PubMed  Google Scholar 

  • Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19:297–321

    CAS  PubMed  Google Scholar 

  • Hernandez MR, Pena JDO (1997) The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol 115:389–395

    CAS  PubMed  Google Scholar 

  • Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SWM (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2 J glaucoma. J Cell Biol 179:1523–1537

    CAS  PubMed  Google Scholar 

  • Hu B, Yip HK, Kwow-Fai S (1998) Localization of p75 neurotrophin receptor in the retina of the adult SD rat: an immunocytochemical study at light and electron microscopic levels. Glia 24:187–197

    CAS  PubMed  Google Scholar 

  • Hu H, Lu W, Zhang M, Zhang X, Argall AJ, Patel S, Lee GE, Kim Y-C, Jacobson KA, Laties AM, Mitchell CH (2010) Stimulation of the P2X(7) receptor kills rat retinal ganglion cells in vivo. Exp Eye Res 91:425–432

    CAS  PubMed  Google Scholar 

  • Iwabe S, Moreno-Mendoza NA, Trigo-Tavera F, Crowder C, Garcia-Sanchez GA (2007) Retrograde axonal transport obstruction of brain-derived neurotrophic factor (BDNF) and its TrkB receptor in the retina and optic nerve of American cocker spaniel dogs with spontaneous glaucoma. Vet Ophthalmol 10:12–19

    PubMed  Google Scholar 

  • Jakobs TC, Libby RT, Ben Y, John SWM, Masland RH (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2 J mice. J Cell Biol 171:313–325

    CAS  PubMed  Google Scholar 

  • Jelsma TN, Friedman HH, Berkelaar M, Bray GM, Aguayo AJ (1993) Different forms of the neurotrophin receptor trkB mRNA predominate in rat retina and optic nerve. J Neurobiol 24:1207–1214

    CAS  PubMed  Google Scholar 

  • John SWM, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2 J mice. Invest Ophthalmol Vis Sci 39:951–962

    CAS  PubMed  Google Scholar 

  • Johnson EC, Guo Y, Cepurna WO, Morrison JC (2009) Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. Exp Eye Res 88:808–815

    CAS  PubMed  Google Scholar 

  • Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 51:2051–2059

    PubMed  Google Scholar 

  • Johnson TV, Bull ND, Martin KR (2011) Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res 93:196–203

    CAS  PubMed  Google Scholar 

  • Ju W-K, Kim K-Y, Lee M-Y, Hofmann H-D, Kirsch M, Cha J-H, Oh S-J, Chun M-H (2000) Up-regulated CNTF plays a protective role for retrograde degeneration in the axotomized rat retina. Neuroreport 11:3893–3896

    CAS  PubMed  Google Scholar 

  • Kalesnykas G, Oglesby EN, Zack DJ, Cone FE, Steinhart MR, Tian J, Pease ME, Quigley HA (2012) Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 53:3847–3857

    PubMed  Google Scholar 

  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II, Wilson MR, Gordon MO (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    PubMed  Google Scholar 

  • Kirsch M, Lee M-Y, Meyer V, Wiese A, Hofmann H-D (1997) Evidence for multiple, local functions of ciliary neurotrophic factor (CNTF) in retinal development: expression of CNTF and its receptor and in vitro effects on target cells. J Neurochem 68:979–990

    CAS  PubMed  Google Scholar 

  • Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3 kinase/protein kinase B signaling. J Neurosci 20:6962–6967

    PubMed  Google Scholar 

  • Koeberle PD, Ball AK (1999) Nitric oxide synthase inhibition delays axonal degeration and promotes the survival of axotomized retinal ganglion cells. Exp Neurol 158:366–381

    CAS  PubMed  Google Scholar 

  • Kretz A, Jacob AM, Tausch S, Straten G, Isenmann S (2006) Regulation of GDNF and its receptor components GFR-alpha 1, -alpha 2 and Ret during development and in the mature retino-collicular pathway. Brain Res 1090:1–14

    CAS  PubMed  Google Scholar 

  • Kugler P, Beyer A (2003) Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem Cell Biol 120:199–212

    CAS  PubMed  Google Scholar 

  • Lambert W, Agarwal R, Howe W, Clark AF, Wordinger RJ (2001) Neurotrophin and neurotrophin receptor expression by cells of the human lamina cribrosa. Invest Ophthalmol Vis Sci 42:2315–2323

    CAS  PubMed  Google Scholar 

  • Lambert WS, Clark AF, Wordinger RJ (2004) Neurotrophin and Trk expression by cells of the human lamina cribrosa following oxygen-glucose deprivation. BMC Neurosci 5:1–15

    Google Scholar 

  • Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR (2006) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13:1328–1341

    CAS  PubMed  Google Scholar 

  • Lebrun-Julien F, Duplan L, Pernet V, Osswald I, Sapieha P, Bourgeois P, Dickson K, Bowie D, Barker PA, Di Polo A (2009) Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 29:5536–5545

    CAS  PubMed  Google Scholar 

  • Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA (2010) ProNGF induces TNF alpha-dependent death of retinal ganglion cells through a p75(NTR) non-cell-autonomous signaling pathway. Proc Natl Acad Sci USA 107:3817–3822

    CAS  PubMed  Google Scholar 

  • Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56

    PubMed  Google Scholar 

  • Leung CKS, Weinreb RN, Li ZW, Liu S, Lindsey JD, Choi N, Liu L, Cheung CY-l, Ye C, Qiu K, Chen LJ, Yung WH, Crowston JG, Pu M, So KF, Pang CP, Lam DSC (2011) Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. Invest Ophthalmol Vis Sci 52:1539–1547

    PubMed  Google Scholar 

  • Levkovitch-Verbin H, Martin KR, Quigley HA, Baumrind LA, Pease ME, Valenta D (2002) Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection. J Glaucoma 11:396–405

    PubMed  Google Scholar 

  • Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barbum Y, Melamed E, Offen D, Melamed S (2010) Intravitreal injections of neurotrophic factor secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve section. Invest Ophthalmol Vis Sci 51:6394–6400

    PubMed  Google Scholar 

  • Libby RT, Howell GR, Pang I-H, Savinova OV, Mehalow AK, Barter JW, Smith RS, Clark AF, John SWM (2007) Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2 J glaucoma model. BMC Neurosci 8:108

    PubMed  Google Scholar 

  • Lindqvist N, Peinado-Ramon P, Vidal-Sanz M, Hallbook F (2004) GDNF, Ret, GFRalpha1 and 2 in the adult rat retino-tectal system after optic nerve transection. Exp Neurol 187:487–499

    CAS  PubMed  Google Scholar 

  • Liu B, Neufeld AH (2000) Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 30:178–186

    CAS  PubMed  Google Scholar 

  • Liu B, Neufeld AH (2001) Nitric oxide synthase-2 in human optic nerve head astrocytes induced by elevated pressure in vitro. Arch Ophthalmol 119:240–245

    CAS  PubMed  Google Scholar 

  • Liu M, Duggan J, Salt TE, Cordeiro MF (2011) Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp Eye Res 92:244–250

    CAS  PubMed  Google Scholar 

  • Liu X, Clark AF, Wordinger RJ (2007) Expression of ciliary neurotrophic factor (CNTF) and its tripartite receptor complex by cells of the human optic nerve head. Mol Vis 13:758–763

    CAS  PubMed  Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 58:193–201

    CAS  Google Scholar 

  • Maresca A, Morgia C la, Caporali L, Valentino ML, Carelli V (2012) The optic nerve: a “mito-window” on mitochondrial neurodegeneration. Mol Cell Neurosci (in press)

  • Martin KRG, Leukovitch-Verbin H, Valenta D, Baumrind L, Pease ME, Quigley HA (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 43:2236–2243

    PubMed  Google Scholar 

  • McLellan GJ, Miller PE (2011) Feline glaucoma—a comprehensive review. Vet Ophthalmol 14:15–29

    PubMed  Google Scholar 

  • Minckler DS, Bunt AH, Johanson GW (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in monkey. Invest Ophthalmol Vis Sci 16:426–441

    CAS  PubMed  Google Scholar 

  • Moreno MC, Sande P, Marcos HA, De Zavalia N, Sarmiento MIK, Rosenstein RE (2005) Effect of glaucoma on the retinal glutamate/glutamine cycle activity. FASEB J 19:1161

    CAS  PubMed  Google Scholar 

  • Morgan JE, Jeffrey G, Foss AJE (1998) Axon deviation in the human lamia cribrosa. Br J Ophthalmol 82:680–683

    CAS  PubMed  Google Scholar 

  • Morgan JE, Datta AV, Erichsen JT, Albon J, Boulton ME (2006) Retinal ganglion cell remodeling in experimental glaucoma. Adv Exp Med Biol 572:397–402

    PubMed  Google Scholar 

  • Morrison JC, Moore CG, Deppmeier LMH, Gold BG, Meshul CK, Johnson EC (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64:85–96

    CAS  PubMed  Google Scholar 

  • Munoz-Fernandez MA, Fresno M (1998) The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 56:307–340

    CAS  PubMed  Google Scholar 

  • Murphy JA, Clarke DB (2006) Target-derived neurotrophins may influence the survival of adult retinal ganglion cells when local neurotrophic support is disrupted: implications for glaucoma. Med Hypotheses 67:1208–1212

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

    CAS  PubMed  Google Scholar 

  • Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41:1940–1944

    CAS  PubMed  Google Scholar 

  • Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115:497–503

    CAS  PubMed  Google Scholar 

  • Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 96:9944–9948

    CAS  PubMed  Google Scholar 

  • Neufeld AH, Kawai S-I, Das S, Vora S, Gachie E, Connor JR, Manning PT (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75:521–528

    CAS  PubMed  Google Scholar 

  • Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21:2215–2223

    CAS  PubMed  Google Scholar 

  • Nork TM, Poulsen GL, Nickells RW, Ver Hoeve JN, Cho N-C, Levin LA, Lucarelli MJ (2000a) Protection of ganglion cells in experimental glaucoma by retinal laser photocoagulation. Arch Ophthalmol 118:1242–1250

    CAS  PubMed  Google Scholar 

  • Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan, Sarks SH, Lemley HL, Millecchia LL (2000b) Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 118:235–245

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Willnow TE, Petersen CM (2005) p75NTR—live or let die. Curr Opin Neurobiol 15:49–57

    CAS  PubMed  Google Scholar 

  • Olney JW (1969) Glutamate induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 28:455–474

    CAS  PubMed  Google Scholar 

  • Osborne NN (2010) Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 90:750–757

    CAS  PubMed  Google Scholar 

  • Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed  Google Scholar 

  • Pang I-H, Johnson EC, Jia L, Cepurna WO, Shepard AR, Hellberg MR, Clark AF, Morrison JC (2005) Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage. Invest Ophthalmol Vis Sci 46:1313–1321

    PubMed  Google Scholar 

  • Park H-YL, Kim JH, Kim HS, Park CK (2012) Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina. Brain Res 1469:10–23

    CAS  PubMed  Google Scholar 

  • Pascale A, Drago F, Govoni S (2012) Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharm Res 66:19–32

    Google Scholar 

  • Pavlidis M, Stupp T, Naskar R, Cengiz C, Thanos S (2003) Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest Ophthalmol Vis Sci 44:5196–5205

    PubMed  Google Scholar 

  • Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41:764–774

    CAS  PubMed  Google Scholar 

  • Pease ME, Zack DJ, Berlinicke C, Bloom K, Cone F, Wang Y, Klein RL, Hauswirth WW, Quigley HA (2009) Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 50:2194–2200

    PubMed  Google Scholar 

  • Pena JDO, Mello PAA, Hernandez MR (2000) Synthesis of elastic microfibrillar components fibrillin-1 and fibrillin-2 by human optic nerve head astrocytes in situ and in vitro. Exp Eye Res 70:589–601

    CAS  PubMed  Google Scholar 

  • Perez M-TR, Caminos E (1995) Expression of brain-derived neurotrophic factor and of its functional receptor in neonatal and adult rat retina. Neurosci Lett 183:96–99

    CAS  PubMed  Google Scholar 

  • Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. 2. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 19:137–152

    CAS  PubMed  Google Scholar 

  • Quigley HA, Anderson DR (1976) Dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol 15:606–616

    CAS  PubMed  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    CAS  PubMed  Google Scholar 

  • Quigley HA, Brown A, Dorman-Pease ME (1991a) Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 75:552–557

    CAS  PubMed  Google Scholar 

  • Quigley HA, Dorman-Pease ME, Brown AE (1991b) Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 10:877–888

    CAS  PubMed  Google Scholar 

  • Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774–786

    CAS  PubMed  Google Scholar 

  • Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41:3460–3466

    CAS  PubMed  Google Scholar 

  • Radius RL, Pederson JE (1984) Laser-induced primate glaucoma. 2. Histopathology. Arch Ophthalmol 102:1693–1698

    CAS  PubMed  Google Scholar 

  • Rauen T (2000) Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids (Vienna) 19:53–62

    CAS  Google Scholar 

  • Reichardt LF (2006) Neuratrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    CAS  PubMed  Google Scholar 

  • Ren R, Li Y, Liu Z, Liu K, He S (2012) Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 53:1003–1011

    CAS  PubMed  Google Scholar 

  • Rodger J, Drummond ES, Hellstroem M, Robertson D, Harvey AR (2012) Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells. PLoS One 7:e31061

    CAS  PubMed  Google Scholar 

  • Rudzinski M, Wong T-P, Saragovi HU (2004) Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol 58:341–354

    CAS  PubMed  Google Scholar 

  • Seki M, Tanaka T, Sakai Y, Fukuchi T, Abe H, Nawa H, Takei N (2005) Muller cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat Muller cells. Neurochem Res 30:1163–1170

    CAS  PubMed  Google Scholar 

  • Shareef SR, Garcia-Valenzuela E, Salierna A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats [letter]. Exp Eye Res 61:379–382

    CAS  PubMed  Google Scholar 

  • Shareef S, Sawada A, Neufeld AH (1999) Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure. Invest Ophthalmol Vis Sci 40:2884–2891

    CAS  PubMed  Google Scholar 

  • Shou T, Liu J, Wang W, Zhou Y, Zhao K (2003) Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 44:3005–3010

    PubMed  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2010) 3D morphometry of the human optic nerve head. Exp Eye Res 90:70–80

    CAS  PubMed  Google Scholar 

  • Sommerfeld MT, Schweigreiter R, Barde Y-A, Hoppe E (2000) Down-regulation of the neurotrophin receptor TrkB following ligand binding: evidence for an involvement of the proteasome and differential regulation of TrkA and TrkB. J Biol Chem 275:8982–8990

    CAS  PubMed  Google Scholar 

  • Spaeth GL, Pereira MLM (2000) How does resetting intraocular pressure help optic nerve function? Eye (London) 14:476–487

    Google Scholar 

  • Spalding KL, Cui Q, Harvey AR (2005) Retinal ganglion cell neurotrophin receptor levels and trophic requirements following target ablation in the neonatal rat. Neurosci 131:387–395

    CAS  Google Scholar 

  • Sullivan RKP, WoldeMussie E, Macnab L, Ruiz G, Pow DV (2006) Evoked expression of the glutamate transporter GLT-1c in retinal ganglion cells in human glaucoma and in a rat model. Invest Ophthalmol Vis Sci 47:3853–3859

    PubMed  Google Scholar 

  • Suzuki A, Nomura S, Morii E, Fukuda Y, Kosaka J (1998) Localization of mRNAs for trkB isoforms and p75 in rat retinal ganglion cells. J Neurosci Res 54:27–37

    CAS  PubMed  Google Scholar 

  • Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421

    CAS  PubMed  Google Scholar 

  • Tezel G, Wax MB (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 20:8693–8700

    CAS  PubMed  Google Scholar 

  • Tezel G, Yang X (2004) Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci 45:4049–4059

    PubMed  Google Scholar 

  • Tezel G, Li LY, Patil RV, Wax MB (2001) TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 42:1787–1794

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  • Vecino E, Garcia-Grespo D, Garcia M, Martinez-Millan L, Sharma SC, Carrascal E (2002) Rat retinal ganglion cells co-express brain derived neurotrophic factor (BDNF) and its receptor TrkB. Vis Res 42:151–157

    CAS  PubMed  Google Scholar 

  • Verdi JM, Birren SJ, Ibanez CF, Persson H, Kaplan DR, Bendetti M, Chao MV, Anderson DJ (1994) P75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12:733–745

    CAS  PubMed  Google Scholar 

  • Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB (1996) Chronic low-dose glutamate is toxic to retinal ganglion cells: toxicity blocked by memantine. Invest Ophthalmol Vis Sci 37:1618–1624

    CAS  PubMed  Google Scholar 

  • Vorwerk CK, Naskar R, Schuettauf F, Quinto K, Zurakowski D, Gochenauer G, Robinson MB, Mackler SA, Dreyer EB (2000) Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci 41:3615–3621

    CAS  PubMed  Google Scholar 

  • Wamsley S, Gabelt BAT, Dahl DB, Case GL, Sherwood RW, May CA, Hernandez MR, Kaufman PL (2005) Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch Ophthalmol 123:64–70

    CAS  PubMed  Google Scholar 

  • Weber AJ, Harman CD (2005) Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 46:3197–3207

    PubMed  Google Scholar 

  • Weber AJ, Kaufman PL, Hubbard WC (1998) Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 39:2304–2330

    CAS  PubMed  Google Scholar 

  • Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41:1370–1379

    CAS  PubMed  Google Scholar 

  • Weber AJ, Harman CD, Viswanathan S (2008) Effects of optic nerve injury, glaucoma, and neuroprotection on the survival, structure, and function of ganglion cells in the mammalian retina. J Physiol (Lond) 586:4393–4400

    CAS  Google Scholar 

  • Weber AJ, Viswanathan S, Ramanathan C, Harman CD (2010) Combined application of BDNF to the eye and brain enhances ganglion cell survival and function in the cat after optic nerve injury. Invest Ophthalmol Vis Sci 51:327–334

    PubMed  Google Scholar 

  • Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, Lavail MM, Steinberg RH (1995) Injury-induced upregulation of bFGF and CNTF mRNAS in the rat retina. J Neurosci 15:7377–7385

    CAS  PubMed  Google Scholar 

  • Wen R, Tao W, Li Y, Sieving PA (2012) CNTF and retina. Prog Retin Eye Res 31:136–151

    CAS  PubMed  Google Scholar 

  • Wilensky JT (1994) Epidemiology of open-angle glaucoma. In: Kaufman PL, Mittag TW (eds) Textbook of Ophthalmology. Glaucoma. Mosby, London, pp 8.29–28.33

    Google Scholar 

  • Wordinger RJ, Lambert W, Agarwal R, Liu X, Clark AF (2003) Cells of the human optic nerve head express glial cell line-derived neurotrophic factor (GDNF) and the GDNF receptor complex. Mol Vis 9:249–256

    CAS  PubMed  Google Scholar 

  • Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol (Lond) 590:2285–2304

    CAS  Google Scholar 

  • Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378:135–157

    CAS  PubMed  Google Scholar 

  • Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC, Burgoyne CF (2011) Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute IOP elevation in 3-D histomorphometric reconstructions. Invest Ophthalmol Vis Sci 52:345–363

    PubMed  Google Scholar 

  • Yuan L, Neufeld AH (2000) Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32:42–50

    CAS  PubMed  Google Scholar 

  • Yuan L, Neufeld AH (2001) Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 64:523–532

    CAS  PubMed  Google Scholar 

  • Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384

    CAS  PubMed  Google Scholar 

  • Yucel YH, Gupta N, Zhang Q, Mizisin AP, Kalichman MW, Weinreb RN (2006) Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol 124:217–225

    CAS  PubMed  Google Scholar 

  • Zhang X, Li A, Ge J, Reigada D, Laties AM, Mitchell CH (2007) Acute increase of intraocular pressure releases ATP into the anterior chamber. Exp Eye Res 85:637–643

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, A.J. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 353, 219–230 (2013). https://doi.org/10.1007/s00441-013-1556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1556-3

Keywords

Navigation