Skip to main content

Advertisement

Log in

Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACTA2:

Smooth muscle actin alpha 2

bFGF:

Basic fibroblast growth factor

COL1:

Type I collagen

COL3:

Type III collagen

DAPI:

4,6-Diamidino-2-phenylindole

FBN1:

Fibrillin 1

FGFR:

Fibroblast growth factor receptor

HPDLC:

Human periodontal ligament cell

PDL:

Periodontal ligament

PDLSC:

Periodontal ligament stem/progenitor cell

TGFβ1:

Transforming growth factor-β1

TGFBR:

Transforming growth factor-β receptor

VEGF:

Vascular endothelial growth factor

References

  • Arora PD, McCulloch CA (1994) Dependence of collagen remodeling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol 159:161–175

    Article  PubMed  CAS  Google Scholar 

  • Beertsen W, McCulloch CAG, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 13:20–40

    Article  CAS  Google Scholar 

  • Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH (2007) Basic fibroblast growth factor with human serum supplementation; enhancement of human chondrocyte proliferation and promotion of cartilage regeneration. Singapore Med J 48:324–332

    PubMed  CAS  Google Scholar 

  • Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 33:811–821

    Article  PubMed  Google Scholar 

  • Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13:7–12

    Article  PubMed  Google Scholar 

  • Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. QJ Nucl Med 47:149–161

    CAS  Google Scholar 

  • Eriksen TA, Wright DM, Purslow PP, Duance VC (2001) Role of Ca2+ for the mechanical properties of fibrillin. Proteins 45:90–95

    Article  PubMed  CAS  Google Scholar 

  • Freeman E (1994) Periodontium. In: Ten Cate AR (ed) Oral histology: development, structure, and function. Mosby, St. Louis, pp 276–312

    Google Scholar 

  • Fujii S, Maeda H, Wada N, Kano Y, Akamine A (2006) Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 324:117–125

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A (2008) Investing a clonal human periodontal ligament progenitor stem cell line in vitro and in vivo. J Cell Physiol 215:743–749

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Maeda H, Tomokiyo A, Monnouchi S, Hori K, Wada N, Akamine A (2010) Effects of TGFβ-1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res 342:233–242

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Heung HS (2009) Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4:809–821

    Article  PubMed  Google Scholar 

  • Ishiguro S, Akasaka Y, Kiguchi H, Suzuki T, Imaizumi R, Ishikawa Y, Ito K, Ishii T (2009) Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen 17:617–625

    Article  PubMed  Google Scholar 

  • Jiang D, Xu C, Li Z, Zhang Y, Han F, Jiang Z (2010) Protective action of hepatocyte growth factor on transforming growth factor beta-1-induced alpha-smooth muscle actin and extracellular matrix in cultured human peritoneal fibroblasts. Med Sci Monit 16:250–254

    Google Scholar 

  • Jonas IE, Riede UN (1980) Reaction of oxytalan fibers in human periodontium to mechanical stress. A combined histochemical and morphometric analysis. J Histochem Cytochem 28:211–216

    Article  PubMed  CAS  Google Scholar 

  • Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, Hamachi T, Maeda K, Yokota M, Kido J, Nagata T, Kurihara H, Takashiba S, Sibutani T, Fukuda M, Noguchi T, Yamazaki K, Yoshie H, Ioroi K, Arai T, Nakagawa T, Ito K, Oda S, Izumi Y, Ogata T, Yamada S, Shimauchi H, Kunimatsu K, Kawanami M, Fujii T, Furuichi Y, Furuuchi T, Sasano T, Imai E, Omae M, Yamada S, Watanuki M, Murakami S (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90:35–40

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Tomokiyo A, Fujii S, Wada N, Akamine A (2011a) Promise of periodontal ligament stem cells in regeneration of periodontium. Stem Cell Res Ther 2:33

    Article  PubMed  Google Scholar 

  • Maeda H, Wada N, Fujii S, Tomokiyo A, Akamine A (2011b) Stem cells in clinic and research. In: Gholamrezanezhad A (ed) Periodontal ligament stem cells. Intech, Croatia, pp 619–636

    Google Scholar 

  • Maeda H, Fujii S, Tomokiyo A, Wada N, Akamine A (2011c) Potentials of periodontal ligament stem/progenitor cell lines in regeneration studies. Oral Craniofac Tissue Eng 1:289–299

    Google Scholar 

  • Murakami S (2000) Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontology 56:188–208

    Article  Google Scholar 

  • Murakami S, Takayama S, Ikezawa K, Shimabukuro Y, Kitamura M, Nozaki T, Terashima A, Asano T, Okada H (1999) Regeneration of periodontal tissues by basic fibroblast growth factor. J Periodontal Res 34:425–430

    Article  PubMed  CAS  Google Scholar 

  • Murano Y, Ota M, Katayama A, Sugito H, Shibukawa Y, Yamada S (2006) Periodontal regeneration following transplantation of proliferating tissue derived from periodontal ligament into class III furcation defects in dogs. Biomed Res 27:139–147

    Article  PubMed  CAS  Google Scholar 

  • Nanci A, Bosshardt DD (2006) Structure of periodontal tissues in health and disease. Periodontol 40:11–28

    Article  Google Scholar 

  • Narayanan AS, Page RC (1983) Connective tissues of the periodontium: a summary of current work. Coll Relat Res 3:33–64

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Yatsuzuka N, Tanaka Y, Kan M, Yamanaka T, Sakamoto A, Takata T, Akagawa Y, Sato GH, Sato JD, Takada K (1997) Growth and differentiation of periodontal ligament-derived cells in serum-free defined culture. In Vitro Cell Dev Biol Anim 33:302–309

    Article  PubMed  CAS  Google Scholar 

  • Palmon A, Roos H, Edel J, Zax B, Savion N, Grosskop A, Pitaru S (2000) Inverse dose- and time-dependent effect of basic fibroblast growth factor on the gene expression of collagen type I and matrix metalloproteinase-1 by periodontal ligament cells in culture. J Periodontol 71:974–980

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Kurokawa M, Oda M, Oshima M, Tsutsui K, Kosaka K, Nakao K, Ogawa M, Manabe R, Suda N, Ganjargal G, Hada Y, Noguchi T, Teranaka T, Sekiguchi K, Yoneda T, Tsuji T (2011) ADAMTSL6β protein rescues fibrillin-1 microfibril disorder in a Marfan syndrome mouse model through the promotion of fibrillin-1 assembly. J Biol Chem 286:38602–38613

    Article  PubMed  CAS  Google Scholar 

  • Sawada T (2010) Ultrastructural localization of fibrillin-1 and fibrillin-2 in oxytalan fibers in periodontal ligament of Japanese Macaca fuscata monkey. J Mol Histol 41:225–231

    Article  PubMed  CAS  Google Scholar 

  • Sculean A, Karring T, Theilade J, Lioubavina N (1997) The regenerative potential of oxytalan fibers. An experimental study in the monkey. J Clin Periodontol 24:932–936

    Article  PubMed  CAS  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  • Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, Shima K, Matsuzaka K, Inoue T (2003) Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 60:491–502

    Article  PubMed  CAS  Google Scholar 

  • Silverio-Ruiz KG, Martinez AE, Garlet GP, Barbosa CF, Silva JS, Cicarelli RM, Valentini SR, Abi-Rached RS, Junior CR (2007) Opposite effects of bFGF and TGF-beta on collagen metabolism by human periodontal ligament fibroblasts. Cytokine 39:130–137

    Article  PubMed  CAS  Google Scholar 

  • Stavri GT, Zachary IC, Baskerville PA, Martin JE, Erusalimsky JD (1995) Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 92:11–14

    Article  PubMed  CAS  Google Scholar 

  • Suda N, Shiga M, Ganburged G, Moriyama K (2009) Marfan syndrome and its disorder in periodontal tissues. J Exp Zool B Mol Dev Evol 321B:503–509

    Article  Google Scholar 

  • Takayama S, Murakami S, Miki Y, Ikezawa K, Tasaka S, Terashima A, Asano T, Okada H (1997) Effects of basic fibroblast growth factor on human periodontal ligament cells. J Periodontal Res 32:667–675

    Article  PubMed  CAS  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A (2008) Development of a multipotent clonal human periodontal ligament cell line. Differentiation 76:337–347

    Article  PubMed  CAS  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Kono K, Yamamoto N, Teramatsu Y, Akamine A (2012) A multipotent clonal human periodontal ligament cell line with neural crest cell phenotypes promotes neurocytic differentiation, migration, and survival. J Cell Physiol 39:556–564

    Google Scholar 

  • Tsuruga E, Irie K, Sakakura Y, Yamada T (2002) Expression of fibrillins and tropoelastin by human gingival and periodontal ligament fibroblasts in vitro. J Periodont Res 37:23–28

    Article  PubMed  CAS  Google Scholar 

  • Tsuruga E, Nakashima K, Ishikawa H, Yajima T, Sawa Y (2009) Stretching modulates oxytalan fibers in human periodontal ligament cells. J Periodontal Res 44:170–174

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wang W, Kapila Y, Lotz J, Kapila S (2009) Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev 18:487–496

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Hasegawa and Yuda for their great support in the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Maeda.

Additional information

This work was financially supported by Grants-in-Aid for Scientific Research (Project nos. 22390359, 23659890, 23689077, 24390426, 24659848, and 24792028) from the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kono, K., Maeda, H., Fujii, S. et al. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res 352, 249–263 (2013). https://doi.org/10.1007/s00441-012-1543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1543-0

Keywords

Navigation