Skip to main content

Advertisement

Log in

Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) from human adult adipose tissue (A-MSCs) have a better differentiative ability than MSCs derived from the derma (D-MSCs). To test whether this difference is associated with differences in the content of multi-potent progenitors in A-MSCs, the number and the differentiative properties of multi-potent progenitors have been analyzed in various preparations of A-MSCs and D-MSCs. Adipogenic and osteogenic differentiation performed on colony-forming units have revealed that adipogenic and osteogenic progenitors are similar in the two populations, with only a slighty better performance of A-MSCs over D-MSCs from passages p0 to p15. An analysis of the presence of tri-, bi-, uni- and nulli-potent progenitors isolated immediately after isolation from tissues (p0) has shown comparable numbers of tri-potent and bi-potent progenitors in MSCs from the two tissues, whereas a higher content in uni-potent cells committed to adipocytes and a lower content in nulli-potent cells has been observed in A-MSCs. Furthermore, we have characterized the progenitors present in A-MSCs after six passages in vitro to verify the way in which in vitro culture can affect content in progenitor cells. We have observed that the percentage of tri-potent cells in A-MSCs at p6 remains similar to that observed at p0, although bi-potent and uni-potent progenitors committed to osteogenic differentiation increase at p6, whereas nulli-potent cells decrease at p6. These data indicate that the greater differentiative ability of A-MSC populations does not correlate directly with the number of multi-potent progenitors, suggesting that other factors influence the differentiation of bulk populations of A-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  PubMed  CAS  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Auzio F, Verardo R, Piazza S, Pignatelli A, Poz A, Baccarani U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini P, Burelli S, Belluzzi CS, Beltrami C (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood 110:3438–3446

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324

    Article  PubMed  CAS  Google Scholar 

  • Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    PubMed  CAS  Google Scholar 

  • Chen FG, Zhang WJ, Bi D, Liu W, Wei X, Chen FF, Zhu L, Cui L, Cao Y (2007) Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 120:2875–2883

    Article  PubMed  CAS  Google Scholar 

  • Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841–7845

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitros of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214

    Article  PubMed  CAS  Google Scholar 

  • D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  CAS  Google Scholar 

  • Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M, Marchetti P, Dotta F, Sorrentino V (2007) Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets.Cell Death Differ 14:1860–1871

    Article  PubMed  CAS  Google Scholar 

  • Galmiche MC, Koteliansky VE, Brière J, Hervé P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway.Blood 82:66–76

    PubMed  CAS  Google Scholar 

  • Gao L, McBeath R, Chen C (2010) Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28:564–572

    PubMed  CAS  Google Scholar 

  • Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Vefaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle and brain. Exp Hematol 30:896–904

    Article  PubMed  CAS  Google Scholar 

  • Koller MR, Manchel I, Palsson BO (1997) Importance of parenchymal:stromal cell ratio for the ex vivo reconstitution of human hematopoiesis. Stem Cells 15:305–313

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahm D, Robey PG (1997) Single colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347

    Article  PubMed  CAS  Google Scholar 

  • Kvale D, Holme R (1996) Intercellular adhesion molecule-1 (ICAM-1; CD54) expression in human hepatocytic cells depends on protein kinase C. J Hepatol 25:670–676

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Kim B, Choi I, Kim H, Choi HS, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324

    Article  PubMed  CAS  Google Scholar 

  • Muller-Sieburg CE, Deryugina E (1995) The stromal cells’ guide to the stem cell universe. Stem Cells 13:477–486

    Article  PubMed  CAS  Google Scholar 

  • Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113:1161–1166

    PubMed  CAS  Google Scholar 

  • Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20:1060–1069

    Article  PubMed  Google Scholar 

  • Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76

    PubMed  CAS  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Pierantozzi E, Gava B, Manini I, Roviello F, Marotta G, Chiavarelli M, Sorrentino V (2010) Pluripotency. Regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells Dev [Epub ahead of print]

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Reyes M, Lund T, Levik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O'Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Gehron Robey P, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organze a hematopoietic microenvironment. Cell 13:324–336

    Article  Google Scholar 

  • Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69:880–893

    Article  PubMed  CAS  Google Scholar 

  • Silva Meirelles L da, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  Google Scholar 

  • Sottile V, Halleux C, Bassilana F, Keller H, Seuwen K (2002) Stem cell characteristics of human trabecular bone-derived cells. Bone 30:699–674

    Article  PubMed  CAS  Google Scholar 

  • Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57:827–872

    Article  PubMed  CAS  Google Scholar 

  • Strobel ES, Gay RE, Greenberg PL (1986) Characterization of the in vitro stromal microenvironment of human bone marrow. Int J Cell Cloning 4:341–356

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli M, Friedenstein A (1983) Hemopoietic stromal microenvironment. Am J Hematol 15:195–203

    Article  PubMed  CAS  Google Scholar 

  • Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS (2000) Liver from bone marrow in humans. Hepatology 32:11–16

    Article  PubMed  CAS  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJL, Barnabé-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    Article  PubMed  CAS  Google Scholar 

  • Tuli R, Seghatoleslami MR, Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003) A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol 23:37–49

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckestein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D, Schwartz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huag J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Sorrentino.

Additional information

Ivana Manini and Letizia Gulino contributed equally to this work.

This work was supported by grants from the Regione Toscana and from the Fondazione Monte dei Paschi di Siena.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplemental Table 1

Cell surface antigen profile of bone-marrow-derived mesenchymal stem cells (BM-MSC), adipose-tissue-derived MSC (A-MSC) and dermal-derived MSC (D-MSC) cell populations. Analysis by fluorescence-activated cell sorting was performed on three independent populations for each tissue between passages 3 and 5. Data are expressed as the percentage mean of positive cells ± SEM within MSC cultures (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manini, I., Gulino, L., Gava, B. et al. Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue. Cell Tissue Res 344, 85–95 (2011). https://doi.org/10.1007/s00441-011-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1139-0

Keywords

Navigation