Skip to main content

Advertisement

Log in

Global daily dynamics of the pineal transcriptome

  • Mini Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Transcriptome profiling of the pineal gland has revealed night/day differences in the expression of a major fraction of the genes active in this tissue, with two-thirds of these being nocturnal increases. A set of over 600 transcripts exhibit two-fold to >100-fold daily differences in abundance. These changes appear to be primarily attributable to adrenergic-cyclic-AMP-dependent mechanisms, which are controlled via a neural pathway that includes the suprachiasmatic nucleus, the master circadian oscillator. In addition to melatonin synthesis, night/day differences in gene expression impact genes associated with several specialized functions, including the immune/inflammation response, photo-transduction, and thyroid hormone/retinoic acid biology. The following nonspecialized cellular features are also affected: adhesion, cell cycle/cell death, cytoskeleton, DNA modification, endothelium, growth, RNA modification, small molecule biology, transcription factors, vesicle biology, signaling involving Ca2+, cyclic nucleotides, phospholipids, mitogen-activated protein kinases, the Wnt signaling pathway, and protein phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arendt J (1994) Melatonin and the mammalian pineal gland, 1st edn. Chapman & Hall, New York

    Google Scholar 

  • Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB et al (2009) Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 284:7606–7622

    Article  PubMed  CAS  Google Scholar 

  • Chik CL, Arnason TG, Dukewich WG, Price DM, Ranger A, Ho AK (2007) Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation. Endocrinology 148:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Do MT, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287

    Article  PubMed  CAS  Google Scholar 

  • Estivill-Torrus G, Vitalis T, Fernandez-Llebrez P, Price DJ (2001) The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mech Dev 109:215–224

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A, Lluis C, Canela EI, Ferre S (2007) Basic concepts in G-protein-coupled receptor homo- and heterodimerization. ScientificWorldJournal 7:48–57

    PubMed  Google Scholar 

  • Ganguly S, Grodzki C, Sugden D, Møller M, Odom S, Gaildrat P, Gery I, Siraganian RP, Rivera J, Klein DC (2007) Neural adrenergic/cyclic AMP regulation of the immunoglobulin E receptor alpha-subunit expression in the mammalian pinealocyte: a neuroendocrine/immune response link? J Biol Chem 282:32758–32764

    Article  PubMed  CAS  Google Scholar 

  • Haldar-Misra C, Pevet P (1983) The influence of different 5-methoxyindoles on the process of protein/peptide secretion characterized by the formation of granular vesicles in the mouse pineal gland. An in vitro study. Cell Tissue Res 230:113–126

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Møller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    Article  PubMed  CAS  Google Scholar 

  • Ho AK, Chik CL (1990) Post-receptor mechanism in dual receptors regulation of second messengers in rat pineal gland. Prog Clin Biol Res 342:139–145

    PubMed  CAS  Google Scholar 

  • Ho AK, Chik CL (2010) Modulation of Aanat gene transcription in the rat pineal gland. J Neurochem 112:321–331

    Article  PubMed  CAS  Google Scholar 

  • Ho AK, Price DM, Dukewich WG, Steinberg N, Arnason TG, Chik CL (2007) Acetylation of histone H3 and adrenergic-regulated gene transcription in rat pinealocytes. Endocrinology 148:4592–4600

    Article  PubMed  CAS  Google Scholar 

  • Ho AK, Thomas TP, Chik CL, Anderson WB, Klein DC (1988) Protein kinase C: subcellular redistribution by increased Ca2+ influx. Evidence that Ca2+-dependent subcellular redistribution of protein kinase C is involved in potentiation of beta-adrenergic stimulation of pineal cAMP and cGMP by K+ and A23187. J Biol Chem 263:9292–9297

    PubMed  CAS  Google Scholar 

  • Kanyo R, Price DM, Chik CL, Ho AK (2009) Salt-inducible kinase 1 in the rat pinealocyte: adrenergic regulation and role in arylalkylamine N-acetyltransferase gene transcription. Endocrinology 150:4221–4230

    Article  PubMed  CAS  Google Scholar 

  • Kappers JA (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog Brain Res 10:87–153

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Coon SL, Blackshaw S, Cepko CL, Møller M, Mukda S, Zhao WQ, Charlton CG, Klein DC (2005) Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. J Biol Chem 280:677–684

    PubMed  CAS  Google Scholar 

  • Kim JS, Bailey MJ, Ho AK, Møller M, Gaildrat P, Klein DC (2007) Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3′, 5′-cyclic adenosine 5′-monophosphate induction of the PDE4B2 variant. Endocrinology 148:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Coon SL, Weller JL, Blackshaw S, Rath MF, Møller M, Klein DC (2009) Muscleblind-like 2: circadian expression in the mammalian pineal gland is controlled by an adrenergic-cAMP mechanism. J Neurochem 110:756–764

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Bailey MJ, Weller JL, Sugden D, Rath MF, Møller M, Klein DC (2010) Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol Cell Endocrinol 314:128–135

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (1985) Photoneural regulation of the mammalian pineal gland. Ciba Found Symp 117:38–56

    PubMed  CAS  Google Scholar 

  • Klein DC (2004) The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland—a tale of conflict and resolution. J Biol Rhythms 19:264–279

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (2007) Arylalkylamine N-acetyltransferase: "the timezyme". J Biol Chem 282:4233–4237

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Begay V et al (1997) The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–358

    PubMed  CAS  Google Scholar 

  • Klein DC, Baler R, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Begay V, Falcon J et al (1999) The molecular basis of the pineal melatonin rhythm: regulation of serotonin N-acetylation. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioral state control: cellular and molecular mechanisms. CRC Press, Boca Raton, pp 45–55

    Google Scholar 

  • Klein DC, Bailey MJ, Carter DA, Kim JS, Shi Q, Ho AK, Chik CL, Gaildrat P, Morin F, Ganguly S et al (2010) Pineal function: impact of microarray analysis. Mol Cell Endocrinol 314:170–183

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Craft CM, Lee RH (1992) Photoreceptors of the retina and pinealocytes of the pineal gland share common components of signal transduction.Neurochem Res 17:81–89

    Article  PubMed  CAS  Google Scholar 

  • Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    Article  PubMed  CAS  Google Scholar 

  • Mata MM, Schrier BK, Klein DC, Weller JL, Chiou CY (1976) On GABA function and physiology in the pineal gland. Brain Res 118:383–394

    Article  PubMed  CAS  Google Scholar 

  • Møller M (1976) The ultrastructure of the human fetal pineal gland. II. Innervation and cell junctions. Cell Tissue Res 169:7–21

    Article  PubMed  Google Scholar 

  • Møller M (1979) Presence of a pineal nerve (nervus pinealis) in fetal mammals. Prog Brain Res 52:103–106

    Article  PubMed  Google Scholar 

  • Møller M, Baeres FM (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 309:139–150

    Article  PubMed  Google Scholar 

  • Møller M, Ingild A, Bock E (1978a) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res 140:1–13

    Article  PubMed  Google Scholar 

  • Møller M, Deurs B van, Westergaard E (1978b) Vascular permeability to proteins and peptides in the mouse pineal gland. Cell Tissue Res 195:1–15

    Article  PubMed  Google Scholar 

  • Møller M, Rath MF, Klein DC (2006) The perivascular phagocyte of the mouse pineal gland: an antigen-presenting cell. Chronobiol Int 23:393–401

    Article  PubMed  Google Scholar 

  • Moore RY (1999) A clock for the ages. Science 284:2102–2103

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98

    Article  PubMed  CAS  Google Scholar 

  • Moriyama Y, Yamamoto A (1995) Vesicular L-glutamate transporter in microvesicles from bovine pineal glands. Driving force, mechanism of chloride anion activation, and substrate specificity. J Biol Chem 270:22314–22320

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AG, Klein DC (1976) Sympathetic nerve endings in the pineal gland protect against acute stress-induced increase in N-acetyltransferase (EC 2.3.1.5.) activity. Endocrinology 99:840–851

    Article  PubMed  CAS  Google Scholar 

  • Price DM, Kanyo R, Steinberg N, Chik CL, Ho AK (2009) Nocturnal activation of aurora C in rat pineal gland: its role in the norepinephrine-induced phosphorylation of histone H3 and gene expression. Endocrinology 150:2334–2341

    Article  PubMed  CAS  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95:340–345

    Article  PubMed  CAS  Google Scholar 

  • Rath MF, Munoz E, Ganguly S, Morin F, Shi Q, Klein DC, Møller M (2006) Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland. J Neurochem 97:556–566

    Article  PubMed  CAS  Google Scholar 

  • Rath MF, Bailey MJ, Kim JS, Ho AK, Gaildrat P, Coon SL, Møller M, Klein DC (2009) Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′, 5′-monophosphate signaling. Endocrinology 150:803–811

    Article  PubMed  CAS  Google Scholar 

  • Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC (1996) Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 137:3033–3045

    Article  PubMed  CAS  Google Scholar 

  • Sugden D, Klein DC (1983) Adrenergic stimulation of rat pineal hydroxyindole-O-methyltransferase. Brain Res 265:348–351

    Article  PubMed  CAS  Google Scholar 

  • Sugden D, Klein DC (1984) Rat pineal alpha 1-adrenoceptors: identification and characterization using [125I]iodo-2-[beta-(4-hydroxyphenyl)-ethylaminomethyl]tetralone. Endocrinology 114:435–440

    Article  PubMed  CAS  Google Scholar 

  • Sugden D, Klein DC (1987) A cholera toxin substrate regulates cyclic GMP content of rat pinealocytes. J Biol Chem 262:7447–7450

    PubMed  CAS  Google Scholar 

  • Sugden D, Klein DC (1988) Activators of protein kinase C act at a postreceptor site to amplify cyclic AMP production in rat pinealocytes. J Neurochem 50:149–155

    Article  PubMed  CAS  Google Scholar 

  • Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314:359–361

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, McNulty JA (1999) Interleukin-1beta expression in the pineal gland of the rat. J Pineal Res 27:42–48

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, O'Brien TE, McNulty JA (2001a) Microglia play a role in mediating the effects of cytokines on the structure and function of the rat pineal gland. Cell Tissue Res 303:423–431

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Schluns KS, Le PT, McNulty JA (2001b) TGF-beta1 and IL-6 expression in rat pineal gland is regulated by norepinephrine and interleukin-1beta. Histol Histopathol 16:1135–1141

    PubMed  CAS  Google Scholar 

  • Van Gelder RN (2001) Non-visual ocular photoreception. Ophthalmic Genet 22:195–205

    Article  PubMed  Google Scholar 

  • Vanecek J, Sugden D, Weller J, Klein DC (1985) Atypical synergistic alpha 1- and beta-adrenergic regulation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate in rat pinealocytes. Endocrinology 116:2167–2173

    Article  PubMed  CAS  Google Scholar 

  • Vigh-Teichmann I, Korf HW, Oksche A, Vigh B (1982) Opsin-immunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res 227:351–369

    Article  PubMed  CAS  Google Scholar 

  • Yatsushiro S, Yamada H, Kozaki S, Kumon H, Michibata H, Yamamoto A, Moriyama Y (1997) L-aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes. J Neurochem 69:340–347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustos, D.M., Bailey, M.J., Sugden, D. et al. Global daily dynamics of the pineal transcriptome. Cell Tissue Res 344, 1–11 (2011). https://doi.org/10.1007/s00441-010-1094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1094-1

Keywords

Navigation