Skip to main content
Log in

Changes in distribution of basic nuclear proteins and chromatin organization during spermiogenesis in the greater bandicoot rat, Bandicota indica

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are ∼50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akama K, Sato H, Furihata-Yamauchi M, Komatsu Y, Tobita T, Nakano M (1996) Interaction of nucleosome core DNA with transition proteins 1 and 3 from boar late spermatid nuclei. J Biochem (Tokyo) 119:448–455

    CAS  Google Scholar 

  • Alfonso PJ, Kistler WS (1993) Immunohistochemical localisation of spermatid nuclear transition protein 2 in the testes of rats and mice. Biol Rep 48:522–539

    Article  CAS  Google Scholar 

  • Allen MJ, Dong XF, O’Neill TE, Yau P, Kowalczykowski SC, Gatewood J, Balhorn R, Bradbury EM (1993) Atomic force microscope measurement of nucleosome cores assembled along defined DNA sequences. Biochemistry 32:8390–8396

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93:298–305

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (1989) Mammalian protamines: structure and molecular interactions. In: Adolph, KW (eds) Molecular biology of chromosome function. Springer, New York, pp 366–395

    Google Scholar 

  • Balhorn R, Weston S, Thomas C, Wyrobek AJ (1984) DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res 150:298–308

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R, Cosman M, Thornton K, Krishnan VV, Corzett M, Bench G, Kramer C, Lee JD, Hud NV, Allen MJ, Prieto M, Meyer-Iese W, Brown JT, Kirz J, Zhang X, Bradbury EM, Maki G, Braun RE, Breed W (1999) Protamine mediated condensation of DNA in mammalian sperm. In: Gagnon, C (eds) The male gamete: from basic science to clinical applications. Cache River, Vienna, pp 55–70

    Google Scholar 

  • Biggiogera M, Muller S, Courtens JL, Fakan S, Romanini MG (1992) Immunoelectron microscopical distribution of histones H2B and H3 and protamines in the course of mouse spermiogenesis. Microsc Res Tech 20:259–267

    Article  PubMed  CAS  Google Scholar 

  • Bishop MWH, Austin CR (1960) Mammalian spermatozoa. Endeavour 16:137–150

    Google Scholar 

  • Breed WG (1993) Novel organization of the spermatozoon in two species of murid rodents from southern Asia. J Reprod Fertil 99:149–158

    PubMed  CAS  Google Scholar 

  • Breed WG (1998) Interspecific variation in structural organisation of the spermatozoon in the Asian bandicoot rats, Bandicota species (family Muridae). Acta Zool 79:277–285

    Article  Google Scholar 

  • Breed WG (2004) The spermatozoon of Eurasian murine rodents: its morphological diversity and evolution. J Morphol 261:52–69

    Article  PubMed  Google Scholar 

  • Brewer L, Corzett M, Balhorn R (2002) Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem 277:38895–38900

    Article  PubMed  CAS  Google Scholar 

  • Caron N, Veilleux S, Boissonneault G (2001) Stimulation of DNA repair by the spermatidal TP1 protein. Mol Reprod Dev 58:437–443

    Article  PubMed  CAS  Google Scholar 

  • Churikov D, Zalenskaya IA, Zelensky AO (2004) Male germline-specific histones in mouse and man. Cytogenet Genome Res 105:203–214

    Article  PubMed  CAS  Google Scholar 

  • Corzett M, Mazrimas J, Balhorn R (2002) Protamine 1:protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 61:519–527

    Article  PubMed  CAS  Google Scholar 

  • Courtens JL, Loir M (1981) A cytochemical study of nuclear changes in boar, bull, goat, mouse, rat, and stallion spermatids. J Ultrastruct Res 74:327–340

    Article  PubMed  CAS  Google Scholar 

  • Courtens JL, Biggiogera M, Fakan S (1991) A cytochemical and immunocytochemical study of DNA distribution in spermatid nuclei of mouse, rabbit, and bull. Cell Tissue Res 265:517–525

    Article  PubMed  CAS  Google Scholar 

  • Dooher GB, Bennett D (1973) Fine structural observations on the development of the sperm head in the mouse. Am J Anat 136:339–361

    Article  PubMed  CAS  Google Scholar 

  • Friend GF (1936) The sperms of British Muridae. Q J Microsc Sci 78:419–443

    Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM (1990) Isolation of 4 core histones from human sperm chromatin represents a minor set of somatic histones. J Biol Chem 265:20662–20666

    PubMed  CAS  Google Scholar 

  • Grimes SR, Meistrich ML, Platz RD, Hnilica LS (1977) Nuclear protein transitions in rat testis spermatids. Exp Cell Res 110:31–39

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodeling and epigenetic features of germ cells. Nature 434:583–589

    Article  PubMed  CAS  Google Scholar 

  • Lalli M, Clermont Y (1981) Structural changes of the head components of the rat spermatid during spermiogenesis. Am J Anat 160:419–434

    Article  PubMed  CAS  Google Scholar 

  • Loir M, Courtens JL (1979) Nuclear reorganization in ram spermatids. J Ultrastruct Res 67:309–324

    Article  PubMed  CAS  Google Scholar 

  • Manochantr S, Sretarugsa P, Chavadej J, Sobhon P (2005) Chromatin organization and basic nuclear proteins in the male germ cells of Rana tigerina. Mol Reprod Dev 70:184–197

    Article  PubMed  CAS  Google Scholar 

  • Meistrich ML (1989) Histone and basic nuclear protein transitions in mammalian spermatogenesis. In: Hnilica LS, Stein GS, Stein JL (eds) Histones and other basic nuclear proteins. CRC Press, Orlando, pp 165–182

    Google Scholar 

  • Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488

    Article  PubMed  Google Scholar 

  • Oko RJ, Jando V, Wagner CL, Kistler WS, Hermo LS (1996) Chromatin reorganization in rat spermatids during the disappearance of testis-specific histone, H1t, and the appearance of transition proteins TP1 and TP2. Biol Reprod 54:1141–1157

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40:25–94

    Article  PubMed  CAS  Google Scholar 

  • Pittoggi C, Renzi L, Zaccagnini G, Cimini F, Degrassi F, Giordano R, Magnano AR, Lorenzini R, Lavia P, Spadafora C (1999) A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci 112:3537–3548

    PubMed  CAS  Google Scholar 

  • Platz RD, Grimes SR, Meistrich ML, Hnilica LS (1975) Changes in nuclear proteins of rat testis cells separated by velocity sedimentation. J Biol Chem 250:5791–5800

    PubMed  CAS  Google Scholar 

  • Ploen L, Courtens J-L (1986) Comparative aspects of mammalian spermiogenesis. Scanning Electron Microsc 11:639–652

    Google Scholar 

  • Pradeepa MM, Rao MRS (2007) Chromatin remodeling during mammalian spermatogenesis: role of testis specific histone variants and transition proteins. In: Gupta SK, Koyoma K, Murray JF (eds) Gamete biology: emerging frontiers on fertility and contraceptive development. Nottingham University Press, Nottingham

    Google Scholar 

  • Queralt R, Adroer R, Oliva R, Winkfein RJ, Retief JD, Dixon GH (1995) Evolution of protamine P1 genes in mammals. J Mol Evol 40:601–607

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1909) Spermien der Nagetiere. Biol Untersuch N F 14:133–162

    Google Scholar 

  • Singh J, Rao MR (1988) Interaction of rat testis protein, TP, with nucleosome core particle. Biochem Int 17:701–710

    PubMed  CAS  Google Scholar 

  • Sobhon P, Chutatape C, Chalermisarachai P, Vongpayabal P, Tanphaichitr N (1982) Transmission and scanning electron microscopic studies of the human sperm chromatin decondensed by micrococcal nuclease and salt. J Exp Zool 221:61–79

    Article  PubMed  CAS  Google Scholar 

  • Wanichanon C, Weerachatyanukul W, Suphamungmee W, Meepool A, Apisawetakan S, Linthong V, Sretarugsa P, Chavadej J, Sobhon P (2001) Chromatin condensation during spermiogenesis in rats. Sci Asia 27:211–220

    Article  CAS  Google Scholar 

  • Worawittayawong P, Leigh CM, Cozens G, Peirce EJ, Setchell BP, Sretarugsa P, Dharmarajan A, Breed WG (2005) Unusual germ cell organization in the seminiferous epithelium of a murid rodent from southern Asia, the greater bandicoot rat, Bandicota indica. Int J Androl 28:180–188

    Article  PubMed  CAS  Google Scholar 

  • Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P (1998) Nuclear basic proteins in spermiogenesis. Biochimie 80:117–128

    Article  PubMed  CAS  Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278:29471–29477

    Article  PubMed  CAS  Google Scholar 

  • Yu YE, Zhang Y, Unni E, Shirey CR, Deng JM, Russell LD, Weil MM, Behringer RR, Meistrich ML (2000) Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci USA 97:4683–4688

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NHA, Weil MM, Russel LD, Behringer RR, Meistrich ML (2001) Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 21:7243–7255

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Shirley CR, Mounsey S, Meistrich ML (2004) Nucleoprotein transitions during spermiogenesis in mice with transition nuclear protein Tnp1 and TNP 2 mutations. Biol Rep 71:1016–1025

    Article  CAS  Google Scholar 

  • Zweidler A (1978) Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol 17:223–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Richard Oko for the transitional protein antibody, Sylviane Muller for the histone antibodies, and Rod Balhorn for the protamine antibody.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William G. Breed or Prapee Sretarugsa.

Additional information

This work was supported by grants from the Thailand Research Fund (RGJ/PHD/00196/2541 and BGJ/37/2543) to Prapee Sretarugsa and Pakawadee Worawittayawong and by a University of Adelaide grant to William G. Breed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worawittayawong, P., Leigh, C., Weerachatyanukul, W. et al. Changes in distribution of basic nuclear proteins and chromatin organization during spermiogenesis in the greater bandicoot rat, Bandicota indica . Cell Tissue Res 334, 135–144 (2008). https://doi.org/10.1007/s00441-008-0668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0668-7

Keywords

Navigation