Skip to main content

Advertisement

Log in

Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bone-marrow-derived mesenchymal stem cells (MSCs) can differentiate into a variety of cell types including smooth muscle cells (SMCs). We have attempted to demonstrate that, following treatment with transforming growth factor-beta 1 (TGF-β1) and ascorbic acid (AA), human bone-marrow-derived MSCs differentiate into the SMC lineage for use in tissue engineering. Quantitative polymerase chain reaction for SMC-specific gene (α smooth muscle actin, h1-calponin, and SM22α) expression was performed on MSCs, which were cultured with various concentrations of TGF-β1 or AA. TGF-β1 had a tendency to up-regulate the expression of SMC-specific genes in a dose-dependent manner. The expression of SM22α was significantly up-regulated by 30 μM AA. We also investigated the additive effect of TGF-β1 and AA for differentiation into SMCs and compared this effect with that of other factors including platelet-derived growth factor BB (PDGF-BB). In addition to SMC-specific gene expression, SMC-specific proteins increased by two to four times when TGF-β1 and AA were used together compared with their administration alone. PDGF did not increase the expression of SMC-specific markers. MSCs cultured with TGF-β1 and AA did not differentiate into osteoblasts and adipocytes. These results suggest that a combination of TGF-β1 and AA is useful for the differentiation of MSCs into SMCs for use in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

ascorbic acid

AB-AM:

antibiotic-antimycotic

ALP:

alkaline phosphatase

ASMA:

alpha smooth muscle actin

BM:

basal medium

CALP:

h1-calponin

DMEM:

Dulbecco’s modified Eagle medium

ECM:

extracellular matrix

FBS:

fetal bovine serum

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

LPL:

lipoprotein lipase

MSC:

mesenchymal stem cell

PDGF:

platelet-derived growth factor

PDT:

population doubling time

PI3K:

phosphatidylinositol 3-kinase

PPARγ2:

proliferator-activated receptor-gamma2

RT-PCR:

reverse transcription and polymerase chain reaction

SMC:

smooth muscle cell

TGF-β:

transforming growth factor-beta

References

  • Aikawa M, Sivam PN, Kuro-o M, Kimura K, Nakahara K, Takewaki S, Ueda M, Yamaguchi H, Yazaki Y, Periasamy M, Nagai R (1993) Human smooth muscle myosin heavy chain isoforms as molecular marker for vascular development and atherosclerosis. Circ Res 73:1000–1012

    PubMed  CAS  Google Scholar 

  • Arakawa E, Hasegawa K, Yanai N, Obinata M, Matsuda Y (2000) A mouse bone marrow stromal cell line, TBR-B, shows inducible expression of smooth muscle-specific genes. FEBS Lett 481:193–196

    Article  PubMed  CAS  Google Scholar 

  • Arakawa E, Hasegawa K, Irie J, Ide S, Ushiki J, Yamaguchi K, Oda S, Matsuda Y (2003) L-ascorbic acid stimulates expression of smooth muscle-specific markers in smooth muscle cells both in vitro and in vivo. J Cardiovasc Phamacol 42:745–751

    Article  CAS  Google Scholar 

  • Bianco P, Robey PG (2000) Marrow stromal stem cells. J Clin Invest 105:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Riminucci M, Granthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cell 19:180–192

    Article  CAS  Google Scholar 

  • Blank RS, Swartz EA, Thompson MM, Olson EN, Qwens GK (1995) A retinoic acid-induced clonal cell line drived from multipotential P19 embryonal carcinoma cells expresses smooth muscle characteristics. Circ Res 76:742–749

    PubMed  CAS  Google Scholar 

  • Charbord P, Lerat H, Newton I, Tamayo E, Gown AM, Singer JW, Herve P (1990) The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Exp Hematol 19:276–282

    Google Scholar 

  • Chen S, Lechleider RJ (2004) Transforming growth factor-β-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Crawford M, Day RM, Briones VR, Leader JE, Jose PA, Lechleider RJ (2006) RhoA modulates Smad signaling during transforming growth factor-b-induced smooth muscle differentiation. J Biol Chem 281:1765–1770

    Article  PubMed  CAS  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE, Charbord P (2002) Origin differentiation of human and murine stroma. Stem Cell 20:205–214

    Article  CAS  Google Scholar 

  • Derynck R, Feng X-H (1997) TGF-β receptor signaling. Biochim Biophys Acta 1333:F105–F150

    PubMed  CAS  Google Scholar 

  • Ferrari G, De Angelis GC, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  • Galmiche MC, Koteliansky VE, Bribre J, Herve P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76

    PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Vitamin C and genomic stability. Mutat Res 475:29–35

    PubMed  CAS  Google Scholar 

  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-b-induced gene expression. J Biol Chem 274:27161–27167

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K (2001) Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acid. Circ Res 89:251–258

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  PubMed  CAS  Google Scholar 

  • Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC, Jung JS, Kim JH (2006) Sphingosylphorylcholine induces differentiation of human mesenchymal stem cell into smooth muscle-like cells through a TGF-β-dependent mechanism. J Cell Sci 119:4994–5005

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Kinner B, Zaleskas JM, Spector M (2002) Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res 278:72–83

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 32:1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Korbling M, Estrov Z (2003) Adult stem cells for tissue repair: a new therapeutic concept? N Engl J Med 349:570–582

    Article  PubMed  Google Scholar 

  • Lien S-C, Usami S, Chien S, Chiu J-J (2006) Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-b1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cell Signal 18:1270–1278

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (2001) Ethical and social consideration of stem cell research. Nature 414:129–131

    Article  PubMed  CAS  Google Scholar 

  • Miano MM, Berk BC (2000) Retinoids: versatile biological response modifiers of vascular smooth muscle phenotype. Circ Res 87:355–362

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti SW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:147–151

    Article  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGF family members. J Orthop Sci 8:740–748

    Article  PubMed  Google Scholar 

  • Runyan CE, Schnaper HW, Poncelet AC (2004) The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-b1. J Biol Chem 279:2632–2639

    Article  PubMed  CAS  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGF-β superfamily members. Cell 85:331–343

    Article  PubMed  CAS  Google Scholar 

  • Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK (2004) Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol 287:C1560–C1568

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Mine H, Horii Y, Takahashi K, Nagai R, Morishita R, Komada M, Asada Y, Sawada T (2000) Neuroblastoma cell line showing smooth muscle cell phenotypes. Diagn Mol Pathol 9:221–228

    Article  PubMed  CAS  Google Scholar 

  • Sukegawa A, Narita T, Kameda T, Saitoh K, Nohno T, Iba H, Yasugi S, Fukuda K (2000) The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127:1971–1980

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kim HS, Kurabayashi M, Hamada H, Fujii H, Aikawa M, Watanabe M, Watanabe N, Sakomura Y, Yazaki Y, Nagai R (1996) Preferential differentiation of P19 mouse embryonal carcinoma cells into smooth muscle cells. Use of retinoic acid and antisense against the central nervous system-specific POU transcription factor Brn-2. Circ Res 78:395–404

    PubMed  CAS  Google Scholar 

  • Tominaga H, Ishiyama M, Ohseto F, Sakamoto K, Hamamoto T, Suzuki K, Watanabe M (1999) A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36:47–50

    Article  CAS  Google Scholar 

  • Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Hanner PA, Danielson KG, Tuan RS (2003) Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21:681–693

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Xu Z, Jiang W, Ma A (2006) Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 109:74–81

    Article  PubMed  Google Scholar 

  • Yamamura H, Yoshikawa H, Tatsuta M, Akedo H, Takahashi K (1998) Expression of smooth muscle calponin gene in human osteosarcoma and its possible association with prognosis. Int J Cancer 79:245–250

    Article  PubMed  CAS  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:43–45

    Article  Google Scholar 

  • Yoon Y, Wecker A, Heyd L, Park J, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha D, Johnson KL, Aikawa R, Asahara T, Losordo DW (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326–338

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yosuke Murase, Shuichi Suzuki, Ryotaro Hashizume, and Taeko Komada for their technical support with the cell culture and histology and to Rina Makimura for her general management assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Narita.

Additional information

The study was supported in part by a Grant-in-Aid for Science Research (No. 17689039) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narita, Y., Yamawaki, A., Kagami, H. et al. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res 333, 449–459 (2008). https://doi.org/10.1007/s00441-008-0654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0654-0

Keywords

Navigation