Skip to main content

Advertisement

Log in

Ovariectomy of 12-month-old rats: effects on osteoprogenitor numbers in bone cell populations isolated from femur and on histomorphometric parameters of bone turnover in corresponding tibia

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Ovariectomy (OVX) in rats results in increased bone turnover and decreased bone volume and bone mineral density when measured in the metaphyses of long bones. We have investigated the effects of OVX on changes in the number of progenitors in cell populations derived from the metaphyseal bone of femurs of ovariectomized rats at 12 months of age, by using colony assays, bone nodule assays, and limiting dilution analysis at 1.5 and 9 months post-OVX. We have also measured histomorphometric parameters of bone formation and resorption in the corresponding tibia at the same time-points. A significant increase, as shown by bone nodule assays and limiting dilution analysis, occurs in the number of progesterone- and dexamethasone-responsive osteoprogenitors in cell populations isolated from ovariectomized rats at the 9-month post-OVX time-point. Progesterone-responsive osteoprogenitors are also increased at 1.5 months post-OVX. The number of fibroblast colony-forming units does not change. Histomorphometry has shown that OVX causes an increase in osteoblast surfaces, mineralizing surfaces, and bone formation rate at both 1.5 and 9 months post-OVX. The mineral apposition rate is increased at 1.5 months post-OVX. OVX also increases parameters of bone resorption at both time-points, the net result being a decrease in bone mineral density and cancellous bone volume at 9 months post-OVX. Thus, OVX in rats at 12 months of age is associated with an increase in the number of both progesterone- and dexamethasone-responsive osteoprogenitors 9 months post-OVX; this corresponds with increases in the histomorphometric parameters of bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bellows CG, Aubin E (1989) Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 133:8–13

    Article  PubMed  CAS  Google Scholar 

  • Bellows CG, Pei W, Jia Y, Heersche JNM (2003) Proliferation, differentiation and self-renewal of osteoprogenitors in vertebral cell populations from aged and young female rats. Mech Ageing Dev 124:747–757

    Article  PubMed  CAS  Google Scholar 

  • Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11:568–577

    PubMed  CAS  Google Scholar 

  • Boyce BF, Hughes DE, Wright KR, Xing L, Dai A (1999) Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Lab Invest 79:83–94

    PubMed  CAS  Google Scholar 

  • Chakraborty TR, Gore AC (2004) Aging-related changes in ovarian hormones, their receptors, and neuroendocrine function. Exp Biol Med 229:977–987

    CAS  Google Scholar 

  • Chan GK, Duque G (2002) Age-related bone loss: old bone, new facts. Gerontology 48:62–71

    Article  PubMed  Google Scholar 

  • Compston J (1998) Bone histomorphometry. In: Arnett TR, Henderson B (eds) Methods in bone biology. Chapman and Hall, London, UK, pp 177–197

    Google Scholar 

  • D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Stenner D, Wahner HW, Mann KG, Riggs BL (1983) Increase in the serum gamma-carboxyglutamic acid protein with aging in women. Implications for the mechanism of age-related bone loss. J Clin Invest 71:1316–1321

    PubMed  CAS  Google Scholar 

  • Dodson SA, Bernard GW, Kenney EB, Carranza FA (1996) In vitro comparison of aged and young osteogenic and hemopoietic bone marrow stem cells and their derivative colonies. J Periodontol 67:184–196

    PubMed  CAS  Google Scholar 

  • Duda RJ Jr, O’Brien JF, Katzmann JA, Peterson JM, Mann KG, Riggs BL (1988) Concurrent assays of circulating bone Gla-protein and bone alkaline phosphatase: effects of sex, age, and metabolic bone disease. J Clin Endocrinol Metab 66:951–957

    Article  PubMed  CAS  Google Scholar 

  • Egrise D, Martin D, Neve P, Vienne A, Verhas M, Schoutens A (1992) Bone blood flow and in vitro proliferation of bone marrow and trabecular bone osteoblast-like cells in ovariectomized rats. Calcif Tissue Int 50:336–341

    Article  PubMed  CAS  Google Scholar 

  • Frost HM (1983) Bone histomorphometry: analysis of trabecular bone dynamics. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, pp 109–131

    Google Scholar 

  • Frost HM, Jee WSS (1992) On the rat model of human osteopenias and osteoporoses. Bone Miner 18:227–236

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Carrasco M, Gruson M, Vernejoul MC de, Denne MA, Miravet L (1988) Osteocalcin and bone morphometric parameters in adults without bone disease. Calcif Tissue Int 42:13–17

    Article  PubMed  CAS  Google Scholar 

  • Griffin MG, Kimble R, Hopfer W, Pacifici R (1993) Dual-energy X-ray absorptiometry of the rat: accuracy, precision and measurement of bone loss. J Bone Miner Res 8:795–800

    PubMed  CAS  Google Scholar 

  • Ishida Y, Heersche JNM (1997) Progesterone stimulates proliferation and differentiation of osteoprogenitor cells in bone cell populations derived from adult female but not from adult male rats. Bone 20:17–25

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Heersche JNM (1999) Progesterone- and dexamethasone-dependent osteoprogenitors in bone cell populations derived from rat vertebrae are different and distinct. Endocrinology 140:3210–3218

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Tertinegg I, Heersche JNM (1996) Progesterone and dexamethasone stimulate proliferation and differentiation of osteoprogenitors and progenitors for adipocytes and macrophages in cell populations derived from adult rat vertebrae. J Bone Miner Res 11:921–930

    PubMed  CAS  Google Scholar 

  • Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. J Clin Invest 101:1942–1950

    PubMed  CAS  Google Scholar 

  • Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  PubMed  CAS  Google Scholar 

  • Lefkovits I, Waldmann H (1979) Limiting dilution analysis of cells in the immune system. Cambridge University Press, Cambridge

    Google Scholar 

  • Li XJ, Jee WSS, Ke HZ, Mori S, Akamine T (1991) Age-related changes of cancellous and cortical bone histomorphometry in female Sprague-Dawley rats. Cells Mater 1 (Suppl):25–35

    Google Scholar 

  • Liu Z, Graff E, Benayahu D (2000) Effect of raloxifene-analog (LY 117018-Hcl) on the bone marrow of ovariectomized mice. J Cell Biochem 76:509–517

    Article  PubMed  CAS  Google Scholar 

  • Majors AK, Boehm CA, Nitto H, Midura RJ, Muschler GF (1997) Characterization of human marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res 15:546–557

    Article  PubMed  CAS  Google Scholar 

  • Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–311

    Article  PubMed  CAS  Google Scholar 

  • Melick RA, Farrugia W, Quelch KJ (1985) Plasma osteocalcin in man. Aust N Z J Med 15:410–416

    PubMed  CAS  Google Scholar 

  • Melsen F, Mosekilde L (1978) Tetracycline double-labeling of iliac trabecular bone in 41 normal adults. Calcif Tissue Res 26:99–102

    Article  PubMed  CAS  Google Scholar 

  • Miller SC, Wronski TJ (1993) Long-term osteopenic changes in cancellous bone structure in ovariectomized rats. Anat Rec 236:433–441

    Article  PubMed  CAS  Google Scholar 

  • Modrowski D, Miravet L, Feuga M, Marie PJ (1993) Increased proliferation of osteoblast precursor cells in estrogen-deficient rats. Am J Physiol 264:E190–E196

    PubMed  CAS  Google Scholar 

  • Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17:171–177

    Article  PubMed  CAS  Google Scholar 

  • Oreffo ROC, Bennett A, Carr AJ, Triffitt JT (1998a) Patients with primary osteoarthritis show no change with ageing in the number of osteogenic precursers. Scand J Rheumatol 27:415–424

    Article  PubMed  CAS  Google Scholar 

  • Oreffo ROC, Bord S, Triffitt JT (1998b) Skeletal progenitor cells and ageing human populations. Clin Sci 94:549–555

    PubMed  CAS  Google Scholar 

  • Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    PubMed  CAS  Google Scholar 

  • Pei W, Bellows CG, Elsubeihi ES, Heersche JNM (2003) Effect of ovariectomy on dexamethasone- and progesterone-dependent osteoprogenitors in vertebral and femoral rat bone cell populations. Bone 33:822–830

    Article  PubMed  CAS  Google Scholar 

  • Pei W, Bellows CG, Jia Y, Heersche JNM (2006) Effect of age on progesterone receptor expression, and osteoprogenitor proliferation and differentiation in female rat vertebral cell populations. J Endocrinol 190:261–270

    Article  PubMed  CAS  Google Scholar 

  • Peng ZQ, Tuukkanen J, Zhang H, Vaananen HK (1999) Alteration in the mechanical competence and structural properties in the femoral neck and vertebrae of ovariectomized rats. J Bone Miner Res 14:616–623

    Article  PubMed  CAS  Google Scholar 

  • Price PA, Parthemore JG, Deftos LJ (1980) New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest 66:878–883

    PubMed  CAS  Google Scholar 

  • Rao LG, Ng B, Brunette DM, Heersche JNM (1977) Parathyroid hormone and prostaglandin E1-response in a selected population of bone cells after repeated subculture and storage at −80°C. Endocrinology 100:1233–1241

    PubMed  CAS  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocrine Rev 23:279–302

    Article  CAS  Google Scholar 

  • Rosen CJ (1999) Serum insulin-like growth factors and insulin-like growth factor-binding proteins. Clinical implications. Clin Chem 45:1384–1390

    PubMed  CAS  Google Scholar 

  • Schenk RK, Olah AJ, Hermann W (1984) Preparation of calcified tissues for light microscopy. In: Dickson GR (ed) Methods of calcified tissue preparation. Elsevier, Amsterdam, pp 1–56

    Google Scholar 

  • Shigeno Y, Ashton BA (1995) Human bone-cell proliferation in vitro decreases with human donor age. J Bone Joint Surg Br 77:139–142

    PubMed  CAS  Google Scholar 

  • Stenderup K, Justesen J, Eriksen EF, Rattan SIS, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16:1120–1129

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi C, Simmons DJ, Fausto A, Russell JE, Binderman I, Avioli LV (1986) Bone deficit in ovariectomised rats. Functional contribution of the marrow stromal cell population and the effect of oral dihydrotachysterol treatment. J Clin Invest 78:637–642

    Article  PubMed  CAS  Google Scholar 

  • Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA guidelines and animal models for osteoporosis. Bone 17:125S–133S

    Article  PubMed  CAS  Google Scholar 

  • Tsugi T, Hughes FJ, McCulloch CAG, Melcher AH (1990) Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech Ageing Dev 51:121–132

    Article  Google Scholar 

  • Waynforth HB (1980) Experimental and surgical techniques in the rat. Academic Press, New York, pp 161–163

    Google Scholar 

  • Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA (1985) Skeletal alterations in ovariectomized rats. Calcif Tissue Int 37:324–328

    Article  PubMed  CAS  Google Scholar 

  • Wronski TJ, Walsh CC, Ignaszewski LA (1986) Histological evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7:119–123

    Article  PubMed  CAS  Google Scholar 

  • Wronski TJ, Cintron M, Dann LM (1988) Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43:179–183

    Article  PubMed  CAS  Google Scholar 

  • Wronski TJ, Dann LM, Scott KS, Cintron M (1989a) Long term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    Article  PubMed  CAS  Google Scholar 

  • Wronski TJ, Dann LM, Horner SL (1989b) Time course of vertebral osteopenia in ovariectomized rats. Bone 10:295–301

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki I, Yamaguchi H (1989) Characteristics of an ovariectomized osteopenic rat model. J Bone Miner Res 4:13–22

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Yamamuro T, Okumura H, Takahashi H (1991) Microstructural changes of osteopenic trabeculae in the rat. Bone 12:185–194

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Bellows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsubeihi, E.S., Bellows, C.G., Jia, Y. et al. Ovariectomy of 12-month-old rats: effects on osteoprogenitor numbers in bone cell populations isolated from femur and on histomorphometric parameters of bone turnover in corresponding tibia. Cell Tissue Res 330, 515–526 (2007). https://doi.org/10.1007/s00441-007-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0506-3

Keywords

Navigation