Skip to main content
Log in

Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Unfertilized eggs commonly lack centrioles, which are usually provided by the male gamete at fertilization, and are unable to assemble functional reproducing centrosomes. However, some insect species lay eggs that develop to adulthood without a contribution from sperm. We report that the oocyte of the parthenogenetic collembolan Folsomia candida is able to self-assemble microtubule-based asters in the absence of pre-existing maternal centrosomes. The asters, which develop near the innermost pole of the meiotic apparatus, interact with the female chromatin to form the first mitotic spindle. The appearance of microtubule-based asters in the cytoplasm of the activated Folsomia oocyte might represent a conserved mechanism for centrosome formation during insect parthenogenesis. We also report that the architecture of the female meiotic apparatus and the structure of the mitotic spindles during the early embryonic divisions are unusual in comparison with that of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buning J (1994) The insect ovary. Chapman and Hall, London

    Google Scholar 

  • Callaini G, Riparbelli MG, Dallai R (1994) The distribution of cytoplasmic bacteria in the early Drosophila embryo is mediated by astral microtubules. J Cell Sci 107:673–682

    PubMed  Google Scholar 

  • Callaini G, Riparbelli MG, Dallai R (1999) Centrosome inheritance in insects: fertilization and parthenogenesis. Biol Cell 91:355–366

    Article  PubMed  CAS  Google Scholar 

  • Czarnetzki AB, Tebbe CC (2004) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6:35–44

    Article  PubMed  CAS  Google Scholar 

  • Cantillana V, Urrutia M, Ubilla A, Fernàndez J (2000) The complex dynamic network of microtubule and microfilament cytasters of the leech zigote. Dev Biol 228:136–149

    Article  PubMed  CAS  Google Scholar 

  • De Saint Phalle B, Sullivan W (1998) Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J Cell Biol 141:1383–1391

    Article  PubMed  Google Scholar 

  • Delattre M, Gonczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117:1619–1630

    Article  PubMed  CAS  Google Scholar 

  • Dirksen ER (1961) The presence of centrioles in artificially activated sea urchin eggs. J Cell Biol 11:244–247

    Article  CAS  Google Scholar 

  • Giansanti MG, Bonaccorsi S, Williams B, Williams EV, Santolamazza C, Goldberg ML, Gatti M (1998) Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev 12:396–410

    PubMed  CAS  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Werren JH, Karr TL (2002) Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae). J Invert Pathol 81:166–174

    Article  Google Scholar 

  • Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G (2001) Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Hollembeck PJ, Cande WZ (1985) Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus. Eur J Cell Biol 37:140–148

    Google Scholar 

  • Itoh R, Hisamatsu M, Matsunaga M, Hishida F (1995) Growth and reproduction of a collembolan species, Folsomia candida (Willem), under experimental conditions. J College Arts Sci 26:23–30

    Google Scholar 

  • Kallenbach RJ (1985) Ultrastructural analysis of the initiation and development of cytasters in sea urchin eggs. J Cell Sci 73:261–278

    PubMed  CAS  Google Scholar 

  • Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294:543–547

    Article  PubMed  CAS  Google Scholar 

  • Keating HH, White JG (1998) Centrosome dynamics in early embryos of Caenorhabditis elegans. J Cell Sci 111:3027–3033

    PubMed  CAS  Google Scholar 

  • Kuriyama R, Borisy GG (1983) Cytasters induced within unfertilized sea-urchin eggs. J Cell Sci 61:175–189

    PubMed  CAS  Google Scholar 

  • Maiato H, DeLuca J, Salmon ED, Earnshaw WC (2004) The dynamic kinetochore-microtubule interface. J Cell Sci 117:5461–5477

    Article  PubMed  CAS  Google Scholar 

  • Manandhar G, Simerly C, Schatten G (2000) Centrosome reduction during mammalian spermiogenesis. Curr Top Dev Biol 49:343–363

    PubMed  CAS  Google Scholar 

  • Marescalchi O, Zauli C, Scali V (2002) Centrosome dynamics and inheritance in related sexual and parthenogenetic Bacillus (Insecta Phasmatodea). Mol Reprod Dev 63:89–95

    Article  PubMed  CAS  Google Scholar 

  • Miki-Noumura T (1977) Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchin. J Cell Sci 24:203–216

    PubMed  CAS  Google Scholar 

  • Nédèlec F, Surrey T, Karsenti E (2003) Self-organisation and forces in the microtubule cytoskeleton. Curr Opin Cell Biol 15:118–124

    Article  PubMed  Google Scholar 

  • Oakley BR (2000) γ-Tubulin. Curr Top Dev Biol 49:27–54

    Article  PubMed  CAS  Google Scholar 

  • Palévody C (1973) Etude cytologique de la parthémogenése chez Folsomia candida (Collembole, Isotomide). C R Acad Sci III 277:2501–2504

    Google Scholar 

  • Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW (2004) Cytology of Wolbachia-induced parthenogenesis in Leptopillina clavipes (Hymenoptera:Figitidae). Genome 47:299–303

    Article  PubMed  Google Scholar 

  • Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550–1553

    Article  PubMed  CAS  Google Scholar 

  • Riparbelli MG, Callaini G (2003) Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev Biol 260:298–313

    Article  PubMed  CAS  Google Scholar 

  • Riparbelli MG, Stouthamer R, Dallai R, Callaini G (1998) Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor. Dev Biol 195:88–99

    Article  Google Scholar 

  • Riparbelli MG, Tagu D, Bonhomme J, Callaini G (2005) Aster self-organization at meiosis: a conserved mechanism in insect parthenogenesis? Dev Biol 278:220–230

    Article  PubMed  CAS  Google Scholar 

  • Sawada T, Schatten G (1988) Microtubules in ascidian eggs during meiosis, fertilization, and mitosis. Cell Motil Cytoskeleton 9:219–230

    Article  PubMed  CAS  Google Scholar 

  • Sibon OC, Kelkar A, Lemstra W, Theurkauf WE (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2:90–95

    Article  PubMed  CAS  Google Scholar 

  • Sluder G, Nordberg JJ (2004) The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16:49–54

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R (1997) Wolbachia-induced parthenogenesis. In: O’Neill SL, Werren JH, Hoffmann AA (eds) Influential passengers. Oxford University Press, New York, pp 102–124

    Google Scholar 

  • Stouthamer R, Kazmer DJ (1994) Cytogenetic of microbe associated parthenogenesis, consequences for gene flow in Trichogrammawasps. Heredity 73:317–323

    Google Scholar 

  • Stephano JL, Gould MC (1995) Parthenogenesis in Urechis caupo (Echiura). I. Persistance of functional maternal asters following activation without meiosis. Dev Biol 167:104–117

    Article  PubMed  CAS  Google Scholar 

  • Tram U, Sullivan W (2000) Reciprocal inheritance of centrosomes in the parthenogenetic hymenopteran Nasonia vitripennis. Curr Biol 10:1413–1419

    Article  PubMed  CAS  Google Scholar 

  • Uetake Y, Kato KH, Washitani-Nemoto S, Remoto SS (2002) Non-equivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies. Dev Biol 247:149–164

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove TT, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol Lett 180:279–286

    PubMed  CAS  Google Scholar 

  • Vavre F, de Jong JH, Stouthamer R (2004) Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 93:592–596

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth P, Khodjakov AE (2004) Pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419

    Article  PubMed  CAS  Google Scholar 

  • Wilson PG, Borisy GG (1998) Maternally expressed gamma Tub37CD in Drosophila is differentially required for female meiosis and embryonic mitosis. Dev Biol 199:273–290

    Article  PubMed  CAS  Google Scholar 

  • Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3:E28–E34

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Palazzo RE (1999) Differential regulation of maternal vs. paternal centrosomes. Proc Natl Acad Sci USA 96:1397–1402

    Article  PubMed  CAS  Google Scholar 

  • Zhang QY, Tamura M, Uetake Y, Washitani-Nemoto S, Remoto S (2004) Regulation of the paternal inheritance of centrosomes in starfish zygotes. Dev Biol 266:190–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ryosaku Itoh for supplying the F. candida strain from Mt. Fuji, and Vanessa Arms for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Callaini.

Additional information

This work was made possible by grants from PAR (University of Siena) and PRIN to G.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riparbelli, M.G., Giordano, R. & Callaini, G. Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida . Cell Tissue Res 326, 861–872 (2006). https://doi.org/10.1007/s00441-006-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0253-x

Keywords

Navigation