Skip to main content

Advertisement

Log in

A rare fraction of human hematopoietic stem cells with large telomeres

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The lack of specific markers for stem cells makes the physical identification of this compartment difficult. Hematopoietic stem cells differ in their repopulating and self-renewal potential. Our study shows that multiple classes of human hematopoietic CD34+ greatly differ in telomere length. Flow-cytometry-based fluorescent in situ hybridization and confocal microscopy of CD34+ cells has revealed remarkable telomere length heterogeneity, with a hybridization pattern consistent with different classes of human hematopoietic progenitor cells. These results also point to the existence of a significant clonal heterogeneity among primitive hematopoietic cells and provide the first evidence of a rare fraction of CD34+ cells with large telomeres in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573

    Article  Google Scholar 

  • Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell. Entity or function? Cell 105:829–841

    Article  Google Scholar 

  • Broccoli D, Young JW, Lange T de (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 92:9082–9086

    Google Scholar 

  • Brummendorf TH, Dragowska W, Zijlmans JMJM, Thornbury G, Lansdorp PM (1998) Asymmetric cell divisions sustain long-term hematopoiesis from single-sorted human fetal liver cells. J Exp Med 188:1117–1124

    Article  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641

    Article  Google Scholar 

  • Counter CM, Hirte HW, Bacchetti S, Harley CB (1994) Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 91:2900–2904

    Google Scholar 

  • Ema H, Takano H, Sudo K, Nakauchi H (2000) In vitro self-renewal division of hematopoietic stem cells. J Exp Med 192:1281–1288

    Article  Google Scholar 

  • Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA (1997) Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 90:182–193

    Google Scholar 

  • Gao FB, Raff M (1997) Cell size control and a cell-intrinsic maturation program in proliferating oligodendrocyte precursor cells. J Cell Biol 138:1367–1377

    Article  Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  Google Scholar 

  • Gothot A, Loo JC van der, Clapp DW, Srour EF (1998) Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 92:2641–2649

    Google Scholar 

  • Guenechea G, Gan OI, Dorrell C, Dick JE (2001) Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2:75–82

    Article  Google Scholar 

  • Haaf T, Ward DC (1995) Higher-order nuclear-structure in mammalian sperm revealed by in-situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–611

    Article  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  • Hediger F, Neumann FR, Van Houwe G, Dubrana K, Gasser SM (2002) Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr Biol 12:2076–2089

    Article  Google Scholar 

  • Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatyszek MA, Shay JW (1995) Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1:249–255

    Article  Google Scholar 

  • Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ, Matsuzaki F (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390:625–629

    Article  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    CAS  PubMed  Google Scholar 

  • Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology, and clinical utility. Blood 87:1–13

    Google Scholar 

  • Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  Google Scholar 

  • Lansdorp PM (1997) Self-renewal of stem cells. Biol Blood Marrow Transplant 3:171–178

    Google Scholar 

  • MacKey MC (2001) Cell kinetic status of haematopoietic stem cells. Cell Prolif 34:71–83

    Article  Google Scholar 

  • Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    CAS  PubMed  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    CAS  PubMed  Google Scholar 

  • Nagele RG, Velasco AQ, Anderson WJ, McMahon DJ, Thomson Z, Fazekas J, Wind K, Lee H (2001) Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. J Cell Sci 114:377–388

    Google Scholar 

  • Oulton R, Harrington L (2000) Telomeres, telomerase, and cancer: life on the edge of genomic stability. Curr Opin Oncol 12:74–81

    Article  Google Scholar 

  • Rawlings DJ, Quan SG, Kato RM, Witte ON (1995) Long-term culture system for selective growth of human B-cell progenitors. Proc Natl Acad Sci USA 92:1570–1574

    Google Scholar 

  • Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 16:743–747

    Google Scholar 

  • Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167

    Article  Google Scholar 

  • Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94:2548–2554

    Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042

    Article  Google Scholar 

  • Strome S (1989) Generation of cell diversity during early embryogenesis in the nematode Caenorhabditis elegans. Int Rev Cytol 114:81–123

    Google Scholar 

  • Sutcliffe JG, Foye PE, Erlander MG, Hilbush BS, Bodzin LJ, Durham JT, Hasel KW (2000) TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proc Natl Acad Sci USA 97:1976–1981

    Article  Google Scholar 

  • Szilvassy SJ, Bass MJ, Van Zant G, Grimes B (1999) Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by ex vivo expansion. Blood 93:1557–1566

    Google Scholar 

  • Wright WE, Shay JW (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 6:849–851

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dolors Tugues (DakoCytomation, Spain) for his help with this study. We are grateful to Nuria Monfort and Marisa López for their technical support, to A. Bosch (Serveis Científico-Tècnics, University of Barcelona) for her assistance with the confocal microscopy, and to Penny Elvy for manuscript preparation. This work was made possible by gifts from Drs. Mariano Monzó and Rafael Rosell. We also thank Drs. Elías Campo, Neus Villamor, and Dolors Colomer for generously allowing us to use their laboratories and flow cytometry software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Petriz.

Additional information

Marta García-Escarp and Vanessa Martinez-Muñoz contributed equally to this work.

This work was supported by a grant to J.P. from the Spanish Ministry of Science and Technology (SAF2002-02618) and by a grant to V.M.-M. from DakoCytomation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Escarp, M., Martinez-Muñoz, V., Barquinero, J. et al. A rare fraction of human hematopoietic stem cells with large telomeres. Cell Tissue Res 319, 405–412 (2005). https://doi.org/10.1007/s00441-004-1022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-1022-3

Keywords

Navigation