Skip to main content

Advertisement

Log in

Perturbations in brain monoamine systems during stress

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Monoamines modulate the activity of many neurons and there is evidence that a balanced synthesis of central nervous monoamines is a prerequisite for normal brain functioning. Stress accelerates both release and turnover of brain monoamines and the resulting fluctuations in concentrations affect various parameters within neurotransmitter systems. Acute stress leads to only transient alterations in monoamine systems so that homeostasis can be restored, in contrast, chronic stress accompanied by repetitive and/or prolonged stimulation of monoaminergic neurons can induce a long-lasting imbalance in central nervous neurotransmitter systems. Accordingly, stress-induced changes in brain monoamine systems are suspected to contribute to psychiatric diseases such as depression. The present paper gives a short overview of stress effects on brain monoamines and their receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aantaa R, Scheinin M (1993) Alpha2-adrenergic agents in anaesthesia. Acta Anaesthesiol Scand 37:433–448

    CAS  PubMed  Google Scholar 

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens and medial frontal cortex. J Neurochem 52:1655–1658

    CAS  PubMed  Google Scholar 

  • Aghajanian GK (1972) Chemical feedback regulation of serotonin-containing neurons in brain. Ann N Y Acad Sci 193:86–94

    CAS  PubMed  Google Scholar 

  • Aghajanian GK, Sanders-Bush E (2002) Serotonin. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology. The fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, pp 15–34

  • Aghajanian GK, Vandermaelen CP (1982a) Alpha2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215:1394–1396

    CAS  PubMed  Google Scholar 

  • Aghajanian GK, Vandermaelen CP (1982b) Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effect of LSD. Brain Res 238:463–469

    CAS  PubMed  Google Scholar 

  • Airaksinen MS, Flügge G, Fuchs E, Panula P (1989) Histaminergic system in the tree shrew brain. J Comp Neurol 286:289–310

    Google Scholar 

  • Aoki C, Pickel VM (1992) C-terminal tail of beta-adrenergic receptors: immunocytochemical localization within astrocytes and their relation to catecholaminergic neurons in N. tractus solitarii and area postrema. Brain Res 571:35–49

    CAS  PubMed  Google Scholar 

  • Arch JR (2002) Beta3-adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440:99–107

    CAS  PubMed  Google Scholar 

  • Areso MP, Frazer A (1991) Effect of repeated administration of novel stressors on central beta adrenoceptors. J Neural Transm Gen Sect 86:229–235

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Steere JC, Hunt RD (1996) The contribution of alpha2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53:448–455

    CAS  PubMed  Google Scholar 

  • Aston-Jones G (2002) Norepinephrine. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology. The fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, pp 47–57

  • Axelrod J (1974) Neurotransmitters. Sci Am 230:59–71

    CAS  PubMed  Google Scholar 

  • Bailly D (1996) The role of beta-adrenoceptor blockers in the treatment of psychiatric disorders. CNS Drugs 5:115–136

    CAS  Google Scholar 

  • Barraclough CA, Wise PM, Selmanoff MK (1984) A role for hypothalamic catecholamines in the regulation of gonadotropin secretion. Recent Prog Horm Res 40:487–529

    CAS  PubMed  Google Scholar 

  • Beato M, Chavez S, Truss M (1996) Transcriptional regulation by steroid hormones. Steroids 61:240–251

    CAS  PubMed  Google Scholar 

  • Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, Shoaf SE, Champoux M, Suomi SJ, Linnoila MV, Higley JD (2002) Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 7:118–122

    CAS  PubMed  Google Scholar 

  • Björklund A, Hökfelt T (1983) Preface. In: Björklund A, Hökfelt T (eds) Preface. Handbook of chemical neuroanatomy. Methods in chemical neuroanatomy. vol 1. Elsevier, Amsterdam, pp xi–xvi

  • Blanchard DC, Shepherd JK, Rodgers RJ, Blanchard RJ (1992) Evidence for differential effects of 8-OH-DPAT on male and female rats in the anxiety/defense test battery. Psychopharmacology 106:531–539

    CAS  PubMed  Google Scholar 

  • Blier P, de Montigny C (1998) A decade of serotonin research: antidepressant mechanisms and therapeutics. Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive-compulsive disorder responses. Biol Psychiatry 44:313–323

    CAS  PubMed  Google Scholar 

  • Bliss EL, Ailion J, Zwanziger J (1968) Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J Pharmacol Exp Ther 164:122–134

    CAS  PubMed  Google Scholar 

  • Boadle-Biber MC, Corley KC, Graves L, Phan TH, Rosecrans J (1989) Increase in the activity of tryptophan hydroxylase from cortex and midbrain of male Fischer 344 rats in response to acute or repeated sound stress. Brain Res 482:306–316

    CAS  PubMed  Google Scholar 

  • Boehm S, Huck S, Freissmuth M (1996) Involvement of a phorbol ester-insensitive protein kinase C in the alpha2-adrenergic inhibition of voltage-gated calcium current in chick sympathetic neurons. J Neurosci 16:4596–4603

    CAS  PubMed  Google Scholar 

  • Boyajian CL, Loughlin SE, Leslie FM (1987) Anatomical evidence for alpha2-adrenoceptor heterogeneity: differential autoradiographic distribution of 3H-rauwolscine and 3H-idazoxan in rat brain. J Pharmacol Exp Ther 241:1079–1091

    CAS  PubMed  Google Scholar 

  • Brannan SK, Miller A, Jones DJ, Kramer GL, Petty F (1995) Beta-adrenergic receptor changes in learned helplessness may depend on stress and test parameters. Pharmacol Biochem Behav 51:553–556

    CAS  PubMed  Google Scholar 

  • Bremner JD, Krystal JH, Southwick SM, Charney DS (1996a) Noradrenergic mechanisms in stress and anxiety. I. Preclinical studies. Synapse 23:28–38

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Krystal JH, Southwick SM, Charney DS (1996b) Noradrenergic mechanisms in stress and anxiety. II. Clinical studies. Synapse 23:39–51

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol. 63:637–672

    Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra S (1996) Stress, depression and the mesolimbic dopamine system. Psychopharmacology 128:331–342

    CAS  PubMed  Google Scholar 

  • Cahill L, Prins B, Weber M, McGaugh JL (1994) Beta-adrenergic activation and memory for emotional events. Nature 371:702–704

    CAS  PubMed  Google Scholar 

  • Cao BJ, Rodgers RJ (1997) Anxiolytic-like profile of p-MPPI, a novel 5HT1A receptor antagonist, in the murine elevated plus-maze. Psychopharmacology 129:365–371

    CAS  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    CAS  PubMed  Google Scholar 

  • Chalmers DT, Kwak SP, Mansour A, Akil H, Watson SJ (1993) Corticosteroids regulate brain hippocampal 5HT1A receptor mRNA expression. J Neurosci 13:914–923

    CAS  PubMed  Google Scholar 

  • Chaouloff F (1993) Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev 18:1–32

    CAS  PubMed  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003) Repeated stress in young and old 5-HT(2C) receptor knockout mice. Physiol Behav 79:217–226

    CAS  PubMed  Google Scholar 

  • Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79

    CAS  PubMed  Google Scholar 

  • Collins S, Caron MG, Lefkowitz RJ (1992) From ligand binding to gene expression: new insights into the regulation of G-protein-coupled receptors. Trends Biochem Sci 17:37–39

    CAS  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(suppl 232):1–55

    Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    CAS  PubMed  Google Scholar 

  • Depaermentier F, Crompton M R, Katona CLE, Horton RW (1993) Beta-adrenoceptors in brain and pineal from depressed suicide victims. Pharmacol Toxicol 71:86–95

    Google Scholar 

  • Dhingra NK, Raju TR, Meti BL (1997) Selective reduction of monoamine oxidase A and B in the frontal cortex of subordinate rats. Brain Res 758:237–240

    CAS  PubMed  Google Scholar 

  • Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46:1375–1387

    CAS  PubMed  Google Scholar 

  • Eason MG, Jacinto MT, Liggett SB (1994) Contribution of ligand structure to activation of alpha2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol 45:696–702

    CAS  PubMed  Google Scholar 

  • Farisse J, Boulenguez P, Semont A, Hery F, Barden N, Faudon M, Hery M (1999) Regional serotonin metabolism under basal and restraint stress conditions in the brain of transgenic mice with impaired glucocorticoid receptor function. Neuroendocrinology 70:413–421

    CAS  PubMed  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF (1997) Principle of neuropsychopharmacology. Sinauer, Sunderland, MA

  • File SE, Gonzalez LE, Andrews N (1996) Comparative study of pre- and postsynaptic 5HT1A receptor modulation of anxiety in two ethological animal tests. J Neurosci 16:4810–4815

    CAS  PubMed  Google Scholar 

  • Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN (2002) Repeated experience of social defeats increases serotonin transporter and monoamine oxidase A mRNA levels in raphe nuclei of male mice. Neurosci Lett 321:25–28

    CAS  PubMed  Google Scholar 

  • Fillenz M (1990) Noradrenergic neurons. Cambridge University Press, Cambridge

  • Fillenz M (1993) Neurochemistry of stress: introduction to techniques. In: Stanford SC, Salmon P (eds) Stress. From synapse to syndrome. Academic, London, pp 247–279

  • Fischer H, Heinzeller T, Raab A (1985) Gonadal response to psychosocial stress in male tree shrews (Tupaia belangeri) morphometry of testis, epididymis and prostate. Andrologia 17:262–275

    CAS  PubMed  Google Scholar 

  • Flügge G (1995) Dynamics of central nervous 5HT1A-receptors under psychosocial stress. J Neurosci 15:7132–7140

    PubMed  Google Scholar 

  • Flügge G (1996) Alterations in the central nervous alpha2-adrenoceptor system under chronic psychosocial stress. Neuroscience 75:187–196

    PubMed  Google Scholar 

  • Flügge G (1999) Effects of cortisol on brain alpha2-adrenoceptors: potential role in stress. Neurosci Biobehav Rev 23:949–956

    PubMed  Google Scholar 

  • Flügge G (2000) Regulation of monoamine receptors in the brain: dynamic changes during stress. Int Rev Cytol 195:145–213

    PubMed  Google Scholar 

  • Flügge G, Jöhren O, Fuchs E (1992) [3H]Rauwolscine binding sites in the brains of male tree shrews are related to social status. Brain Res 597:131–137

    PubMed  Google Scholar 

  • Flügge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (Tupaia belangeri). J Comp Neurol 343:597–608

    Google Scholar 

  • Flügge G, Ahrens O, Fuchs E (1997a) Beta-adrenoceptors in the tree shrew brain. I. Distribution and characterization of [125I]iodocyanopindolol binding sites. Cell Mol Neurobiol 17:401–415

    PubMed  Google Scholar 

  • Flügge G, Ahrens O, Fuchs E (1997b) Beta-adrenoceptors in the tree shrew brain. II. Time-dependent effects of chronic psychosocial stress on [125I]iodocyanopindolol bindings sites. Cell Mol Neurobiol 17:417–432

    PubMed  Google Scholar 

  • Flügge G, Ahrens O, Fuchs E (1997c) Monoamine receptors in the prefrontal cortex of Tupaia belangeri during chronic psychosocial stress. Cell Tissue Res 288:1–10

    PubMed  Google Scholar 

  • Flügge G, Kramer M, Rensing S, Fuchs E (1998) 5HT1A-receptors and behaviour under chronic stress: selective counteraction by testosterone. Eur J Neurosci 10:2685–2693

    PubMed  Google Scholar 

  • Flügge G, Kramer M, Fuchs E (2001) Chronic subordination stress in male tree shrews: replacement of testosterone affects behavior and central alpha2-adrenoceptors. Physiol Behav 73:293–300

    PubMed  Google Scholar 

  • Flügge G, van Kampen M, Meyer H, Fuchs E (2003) Alpha-2A and 2C adrenoceptor regulation in the brain: alpha-2A changes persist after chronic stress. Eur J Neurosci 17:917–928

    PubMed  Google Scholar 

  • Fuchs E, Flügge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258

    CAS  PubMed  Google Scholar 

  • Fuchs E, Kramer M, Hermes B, Netter P, Hiemke C (1996) Psychosocial stress in tree shrews: clomipramine counteracts behavioral and endocrine changes. Pharmacol Biochem Behav 54:219–228

    CAS  PubMed  Google Scholar 

  • Garcia-Sainz JA, Vazquez-Prado J, Villalobos-Molina R (1999) Alpha1-adrenoceptors: subtypes, signaling, and roles in health and disease. Arch Med Res 30:449–458

    CAS  PubMed  Google Scholar 

  • Garcia-Sevilla JA, Escriba PV, Ozaita A, La Harpe R, Walzer C, Eytan A, Guimon J (1999) Up-regulation of immunolabeled alpha2A-adrenoceptors, Gi coupling proteins, and regulatory receptor kinases in the prefrontal cortex of depressed suicides. J Neurochem 72:282–291

    PubMed  Google Scholar 

  • Gonzalez LE, Andrews N, File SE (1996) 5HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Res 732:145–153

    CAS  PubMed  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR (1985) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5HT1 function. Neuropharmacology 24:1187–1194

    Google Scholar 

  • Gozlan H, el Mestikawy S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142

    CAS  PubMed  Google Scholar 

  • Gray R, Johnston D (1987) Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327:620–622

    CAS  PubMed  Google Scholar 

  • Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65:319–395

    CAS  PubMed  Google Scholar 

  • Guyenet PG (1990) Role of the ventral medulla oblongata in blood pressure regulation. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, Oxford, pp 145–167

  • Hadcock JR, Wang HY, Malbon CC (1989) Agonist-induced destabilization of beta-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced upregulation of beta-adrenoceptors. J Biol Chem 264:19928–19933

    CAS  PubMed  Google Scholar 

  • Haller J, Bakos N, Rodriguiz RM, Caron MG, Wetsel WC, Liposits Z (2002) Behavioral responses to social stress in noradrenaline transporter knockout mice: effects on social behavior and depression. Brain Res Bull 58:279–284

    CAS  PubMed  Google Scholar 

  • Hamon M, Gozlan H, el Mestikawy S, Emerit MB, Bolanos F, Schechter L (1990) The central 5HT1A-receptors: pharmacological, biochemical, functional, and regulatory properties. In: The neuropharmacology of serotonin. Ann N Y Acad Sci 600, New York, pp 114–129

  • Harley C (1991) Noradrenergic and locus coeruleus modulation of the perforant path-evoked potential in rat dentate gyrus supports a role for the locus coeruleus in attentional and memorial processes. Prog Brain Res 88:307–321

    CAS  PubMed  Google Scholar 

  • Heck DA, Bylund DB (1998) Differential down-regulation of alpha-2 adrenergic receptor subtypes. Life Sci 62:1467–1472

    CAS  PubMed  Google Scholar 

  • Heidenreich PA, Lee TT, Massie BM (1997) Effect of beta-blockade on mortality in patients with heart failure: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 30:27–34

    CAS  PubMed  Google Scholar 

  • Henry JP, Stephens PM (1977) Stress, health, and the social environment. Springer, Berlin Heidelberg New York

  • Hökfelt T, Johansson O, Goldstein M (1984) Central catecholamine neurons as revealed by immunocytochemistry with special reference to adrenaline neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, vol 2, part I. Elsevier, Amsterdam, pp 157–276

  • Holmberg M, Scheinin M, Kurose H, Miettinen R (1999) Adrenergic alpha2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. Neuroscience 93:1323–1333

    CAS  PubMed  Google Scholar 

  • Holsboer F (1999) Molekulare Mechanismen der Depressionstherapie. In: Ganten D, Ruckpaul K (eds) Handbuch der molekularen Medizin. Springer, Berlin Heidelberg New York, pp 273–318

  • Hosoda K, Duman RS (1993) Regulation of beta1-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J Neurochem 60:1335–1343

    PubMed  Google Scholar 

  • Ihalainen JA, Tanila H (2002) In vivo regulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse prefrontal cortex. Eur J Neurosci 15:1789–1794

    PubMed  Google Scholar 

  • Imperato A, Cabib S, Puglisi-Allegra S (1993) Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Res 60:333–336

    Article  Google Scholar 

  • Ishimatsu M, Kidani Y, Tsuda A, Akasu T (2002) Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus. J Neurophysiol 87:1206–1212

    CAS  PubMed  Google Scholar 

  • Isovich E, Mijnster MJ, Flügge G, Fuchs E (2000) Chronic psychosocial stress reduces the density of dopamine transporters. Eur J Neurosci 12:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Isovich E, Engelmann M, Landgraf R, Fuchs E (2001) Social isolation after a single defeat reduces striatal dopamine transporter binding in rats. Eur J Neurosci 13:1254–1256

    CAS  PubMed  Google Scholar 

  • Ito C (2000) The role of brain histamine in acute and chronic stresses. Biomed Pharmacother 54:263–267

    CAS  PubMed  Google Scholar 

  • Jackson A, Uphouse L (1996) Prior treatment with estrogen attenuates the effects of the 5HT1A agonist, 8-OH-DPAT, on lordosis behavior. Horm Behav 30:145–152

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (1995) Serotonin and behavior. A general hypothesis. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. The fourth generation of progress. Raven, New York, pp 461–469

  • Jhanwar-Uniyal M, Leibowitz SF (1986) Impact of circulating corticosterone on alpha1- and alpha2-noradrenergic receptors in discrete brain areas. Brain Res 368:404–408

    CAS  PubMed  Google Scholar 

  • Joëls M, De Kloet ER (1994) Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol 43:1–36

    CAS  PubMed  Google Scholar 

  • Joëls M, Hesen W, De Kloet ER (1991) Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. J Neurosci 11:2288–2294

    CAS  PubMed  Google Scholar 

  • Johnson RG, Fiorella D, Winter JC, Rabin RA (1997) [3H]8-OH-DPAT labels a 5HT site coupled to inhibition of phosphoinositide hydrolysis in the dorsal raphe. Eur J Pharmacol 329:99–106

    CAS  PubMed  Google Scholar 

  • Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific functions of alpha2-adrenergic receptors. J Pharmacol Exp Ther 293:1–7

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–328

    CAS  PubMed  Google Scholar 

  • Kehr J, Yoshitake T, Wang FH, Wynick D, Holmberg K, Lendahl U, Bartfai T, Yamaguchi M, Hökfelt T, Ogren SO (2001) Microdialysis in freely moving mice: determination of acetylcholine, serotonin and noradrenaline release in galanin transgenic mice. J Neurosci Methods 109:71–80

    CAS  PubMed  Google Scholar 

  • Kiely J, Hadcock JR, Bahouth SW, Malbon CC (1994) Glucocorticoids downregulate beta1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem J 302:397–403

    CAS  PubMed  Google Scholar 

  • Kirby LG, Lucki I (1998) The effect of repeated exposure to forced swimming on extracellular levels of 5-hydroxytryptamine in the rat. Stress 2:251–263

    CAS  PubMed  Google Scholar 

  • Knigge U, Warberg J (1991) The role of histamine in the neuroendocrine regulation of pituitary hormone secretion. Acta Endocrinol (Copenh) 124:609–619

    Google Scholar 

  • Kobayashi K, Ota A, Togari A, Morita S, Mizuguchi T, Sawada H, Yamada K, Nagatsu I, Matsumoto S, Fujita K, et al (1995) Alteration of catecholamine phenotype in transgenic mice influences expression of adrenergic receptor subtypes. J Neurochem 65:492–501

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T, Nakahara D, Fukabori R, Yasoshima Y, Yamamoto T, Miura M, Kano M, Mamiya T, Miyamoto Y, Nabeshima T (2000) Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J Neurosci 15:2418–2426

    Google Scholar 

  • Korte SM, Bouws GA, Koolhaas JM, Bohus B (1992) Neuroendocrine and behavioral responses during conditioned active and passive behavior in the defensive burying/probe avoidance paradigm: effects of ipsapirone. Physiol Behav 52:355–361

    CAS  PubMed  Google Scholar 

  • Korte SM, Meijer OC, de Kloet ER, Buwalda B, Keijser J, Sluyter F, van Oortmerssen G, Bohus B (1996) Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res 736:338–343

    CAS  PubMed  Google Scholar 

  • Kreiss D S, Lucki I (1992) Desensitization of 5HT1A autoreceptors by chronic administration of 8-OH-DPAT. Neuropharmacology 31:1073–1076

    CAS  PubMed  Google Scholar 

  • Laaris N, Le Poul E, Hamon M, Lanfumey L (1997) Stress-induced alterations of somatodendritic 5HT1A autoreceptor sensitivity in the rat dorsal raphe nucleus: in vitro electrophysiological evidence. Fundam Clin Pharmacol 11:206–214

    CAS  PubMed  Google Scholar 

  • Lalley PM, Bischoff AM, Richter DW (1994) Serotonin 1A-receptor activation suppresses respiratory apneusis in the cat. Neurosci Lett 172:59–62

    CAS  PubMed  Google Scholar 

  • Lam S, Shen Y, Nguyen T, Messier TL, Brann M, Comings D, George SR, O’Dowd BF (1996) A serotonin receptor gene (5HT1A) variant found in a Tourette’s syndrome patient. Biochem Biophys Res Commun 219:853–858

    CAS  PubMed  Google Scholar 

  • Lanfumey L, Mannoury La Cour C, Froger N, Hamon M (2000) 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochem Res 25:1199–1206

    CAS  PubMed  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    CAS  PubMed  Google Scholar 

  • Limbird LE (1988) Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J 2:2686–2695

    CAS  PubMed  Google Scholar 

  • Linthorst AC, Flachskamm C, Holsboer F, Reul JM (1996) Activation of serotonergic and noradrenergic neurotransmission in the rat hippocampus after peripheral administration of bacterial endotoxin: involvement of the cyclo-oxygenase pathway. Neuroscience 72:989–997

    CAS  PubMed  Google Scholar 

  • Linthorst AC, Flachskamm C, Barden N, Holsboer F, Reul JM (2000) Glucocorticoid receptor impairment alters CNS responses to a psychological stressor: an in vivo microdialysis study in transgenic mice. Eur J Neurosci 12:283–291

    CAS  PubMed  Google Scholar 

  • Little KY, Clark TB, Ranc J, Duncan GE (1993) Beta-adrenergic receptor binding in frontal cortex from suicide victims. Biol Psychiatry 34:596–605

    CAS  PubMed  Google Scholar 

  • Lopez JF, Chalmers DT, Little KY, Watson SJ (1998) A.E. Bennett Research Award Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43:547–573

    CAS  PubMed  Google Scholar 

  • Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911–923

    CAS  PubMed  Google Scholar 

  • Lowther S, De Paermentier F, Cheetham SC, Crompton MR, Katona CL, Horton RW (1997) 5HT1A receptor binding sites in post-mortem brain samples from depressed suicides and controls. J Affect Disord 42:199–207

    CAS  PubMed  Google Scholar 

  • Lucki I (1992) 5HT1 receptors and behavior. Neurosci Biobehav Rev 16:83–93

    CAS  PubMed  Google Scholar 

  • MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting-homing in on alpha2-adrenoceptor-subtype function. Trends Pharmacol Sci 18:211–219

    CAS  PubMed  Google Scholar 

  • MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the alpha2A-adrenergic receptor subtype. Science 273:801–803

    CAS  PubMed  Google Scholar 

  • Madison DV, Nicoll RA (1986) Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol 372:221–244

    CAS  PubMed  Google Scholar 

  • Maier SF, Grahn RE, Watkins LR (1995) 8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhancement of fear conditioning and interference with escape produced by exposure to inescapable shock. Behav Neurosci 109:404–412

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Arora RC, Meltzer HY (1991) Serotonergic measures in suicide brain: 5HT1A binding sites in frontal cortex of suicide victims. J Neural Transm Gen Sect 85:181–194

    CAS  PubMed  Google Scholar 

  • McCall RB, Clement ME (1994) Role of serotonin1A and serotonin2-receptors in the central regulation of the cardiovascular system. Pharmacol Rev 46:231–243

    CAS  PubMed  Google Scholar 

  • McCormick DA, Pape HC, Williamson A (1991) Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog Brain Res 88:293–305

    CAS  PubMed  Google Scholar 

  • McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    CAS  PubMed  Google Scholar 

  • McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (1995) Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry 37:383–393

    CAS  PubMed  Google Scholar 

  • Meador-Woodruff JH (1994) Update on dopamine receptors. Ann Clin Psychiatry 6:79–90

    CAS  PubMed  Google Scholar 

  • Meana JJ, Barturen F, Garcia Sevilla JA (1992) Alpha2-adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression. Biol Psychiatry 31:471–490

    CAS  PubMed  Google Scholar 

  • Mendelson SD, Gorzalka BB (1986) 5HT1A receptors: differential involvement in female and male sexual behavior in the rat. Physiol Behav 37:345–351

    CAS  PubMed  Google Scholar 

  • Mendelson SD, McEwen BS (1992) Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5HT1A and 5HT1B receptors in the dorsal hippocampus and cortex of the rat. Neuroendocrinology 55:444–450

    CAS  PubMed  Google Scholar 

  • Meyer H, Palchaudhuri M, Scheinin M, Flügge G (2000) Regulation of alpha2A-adrenoceptor expression by chronic stress in neurons of the brain stem. Brain Res 880:147–158

    CAS  PubMed  Google Scholar 

  • Mijnster MJ, Isovich E, Fuchs E (1998) Chronic psychosocial stress alters the density of dopamine D2-like binding sites. Soc Neurosci Abstr 24:277

    Google Scholar 

  • Mijnster MJ, van der Hart M, Bosker F, Cremers T, Westerink B, Fuchs E (2001) Measuring dopamine in freely moving tree shrews: a pilot microdialysis study. Soc Neurosci Abstr 27:415

    Google Scholar 

  • Milner TA, Lee A, Aicher SA, Rosin DL (1998) Hippocampal alpha2A-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J Comp Neurol 395:310–327

    CAS  PubMed  Google Scholar 

  • Miquel MC, Doucet E, Riad M, Adrien J, Vergé D, Hamon M (1992) Effect of the selective lesion of serotoninergic neurons on the regional distribution of 5HT1A receptor mRNA in the rat brain. Mol Brain Res 14:357–362

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T (2002) Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 22:2335–2342

    CAS  PubMed  Google Scholar 

  • Moore RY, Card JP (1984) Noradrenaline-containing neuron systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, vol 2, part I. Elsevier, Amsterdam, pp 123–156

  • Nestler EJ, Hyman SE (2002) Regulation of gene expression. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology. The fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, pp 217–228

  • Nicholas AP, Pieribone V, Hökfelt T (1993a) Distributions of mRNAs for alpha2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594

    Google Scholar 

  • Nicholas AP, Pieribone VA, Hökfelt T (1993b) Cellular localization of messenger RNA for beta1 and beta2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1023–1039

    CAS  PubMed  Google Scholar 

  • Nieuwenhuis R (1985) Chemoarchitecture of the Brain. Springer, Berlin Heidelberg New York

  • Nishi M, Whitaker Azmitia PM, Azmitia EC (1996) Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5HT 1A agonist, S100b, and corticosteroid receptor agonists. Synapse 23:1–9

    CAS  PubMed  Google Scholar 

  • Nukina I, Glavin GB, La Bella FS (1987) Acute cold-restraint stress affects alpha2-adrenoceptors in specific brain regions of the rat. Brain Res 401:30–33

    CAS  PubMed  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17(suppl 1):S1–S12

    Google Scholar 

  • Ordway GA, Gambarana C, Frazer A (1988) Quantitative autoradiography of central beta adrenoceptor subtypes: comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. J Pharmacol Exp Ther 247:379–389

    Google Scholar 

  • Ordway GA, Widdowson PS, Smith KS, Halaris A (1994) Agonist binding to alpha2-adrenoceptors is elevated in the locus coeruleus from victims of suicide. J Neurochem 63:617–624

    CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Kvetnansky R, Fukuhara K, Armando I, Kopin IJ, Goldstein DS (1993) Effects of single or repeated immobilization on release of norepinephrine and its metabolites in the central nucleus of the amygdala in conscious rats. Neuroendocrinology 57:626–633

    CAS  PubMed  Google Scholar 

  • Paetsch PR, Greenshaw AJ (1993) Effects of chronic antidepressant treatment on beta-adrenoceptor subtype binding in the rat cerebral cortex and cerebellum. Mol Chem Neuropathol 20:21–31

    CAS  PubMed  Google Scholar 

  • Palacios JM, Waeber C, Hoyer D, Mengod G (1990) Distribution of serotonin receptors. Ann N Y Acad Sci 600:36–52

    CAS  PubMed  Google Scholar 

  • Palvimaki EP, Laakso A, Kuoppamaki M, Syvalahti E, Hietala J (1994) Upregulation of beta1-adrenergic receptors in rat brain after chronic citalopram and fluoxetine treatments. Psychopharmacology 115:543–546

    CAS  PubMed  Google Scholar 

  • Pandey SC, Ren X, Sagen J, Pandey GN (1995) Beta-adrenergic receptor subtypes in stress-induced behavioral depression. Pharmacol Biochem Behav 51:339–344

    CAS  PubMed  Google Scholar 

  • Panula P, Flügge G, Fuchs E, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the mammalian spinal cord. Brain Res 484:234–239

    CAS  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A-receptor. Proc Natl Acad Sci U S A 95:10734–10739

    Article  CAS  PubMed  Google Scholar 

  • Parsons LH, Kerr TM, Tecott LH (2001) 5-HT1A receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem 77:607–617

    Article  CAS  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1985) Beta-adrenoceptor subtypes in the human brain: autoradiographic localization. Brain Res 358:324–328

    CAS  PubMed  Google Scholar 

  • Picciotto MR (1999) Knock-out mouse models used to study neurobiological systems. Crit Rev Neurobiol 13:103–149

    CAS  PubMed  Google Scholar 

  • Pippig S, Andexinger S, Lohse MJ (1995) Sequestration and recycling of beta2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 47:666–676

    CAS  PubMed  Google Scholar 

  • Raab A (1971) Der Serotoninstoffwechsel in einzelnen Hirnteilen vom Tupaia (Tupaia belangeri) bei soziopsychischem Stress. Z Vergl Physiol 72:54–66

    Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of beta1- and beta2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A 81:1585–1589

    CAS  PubMed  Google Scholar 

  • Redmond AM, Leonard BE (1997) An evaluation of the role of the noradrenergic system in the neurobiology of depression: a review. Hum Psychopharmacol Clin Exp 12:407–430

    CAS  Google Scholar 

  • Riad M, Emerit MB, Hamon M (1994) Neurotrophic effects of ipsapirone and other 5HT1A receptor agonists on septal cholinergic neurons in culture. Brain Res Dev Brain Res 82:245–258

    CAS  PubMed  Google Scholar 

  • Ribas C, Miralles A, Busquets X, Garcia-Sevilla JA (2001) Brain alpha2-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA. Br J Pharmacol 132:1467–1476

    CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1995) Central norepinephrine neurons and behavior. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. The fourth generation of progress. Raven, New York, pp 363–372

  • Roy ML, Sontheimer H (1995) Beta-adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem 64:1576–1584

    CAS  PubMed  Google Scholar 

  • Saavedra JM (1988) Brain epinephrine in hypertension and stress. In: Stolk JM, U’Prichard DC, Fuxe K (eds) Epinephrine in the central nervous system. Oxford University Press, Oxford, pp 102–116

  • Sallinen J, Haapalinna A, MacDonald E, Viitamaa T, Lahdesmaki J, Rybnikova E, Pelto-Huikko M, Kobilka BK, Scheinin M (1999) Genetic alteration of the alpha2-adrenoceptor subtype C in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry 4:443–452

    CAS  PubMed  Google Scholar 

  • Sanders-Bush E, Canton H (1995) Serotonin receptors. Signal transduction pathways. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. The fourth generation of progress. Raven, New York, pp 431–441

  • Scheinin M, Lomasney JW, Hayden Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT Jr (1994) Distribution of alpha2-adrenergic receptor subtype gene expression in rat brain. Mol Brain Res 21:133–149

    CAS  PubMed  Google Scholar 

  • Schmitz D, Empson RM, Heinemann U (1995) Serotonin reduces inhibition via 5HT1A receptors in area CA1 of rat hippocampal slices in vitro. J Neurosci 15:7217–7225

    CAS  PubMed  Google Scholar 

  • Shih JC, Chen K (1999) MAO-A and -B gene knock-out mice exhibit distinctly different behavior. Neurobiology 7:235–246

    CAS  PubMed  Google Scholar 

  • Simpson MD, Lubman DI, Slater P, Deakin JF (1996) Autoradiography with [3H]8-OH-DPAT reveals increases in 5HT1A receptors in ventral prefrontal cortex in schizophrenia. Biol Psychiatry 39:919–928

    CAS  PubMed  Google Scholar 

  • Singer W (1986) The brain as a self-organizing system. Eur Arch Psychiatry Neurol Sci 236:4–9

    CAS  PubMed  Google Scholar 

  • Slater P, Doyle CA, Deakin JF (1998) Abnormal persistence of cerebellar serotonin-1A receptors in schizophrenia suggests failure to regress in neonates. J Neural Transm 105:305–315

    CAS  PubMed  Google Scholar 

  • Smith MA, Brady LS, Glowa J, Gold PW, Herkenham M (1991) Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res 544:26–32

    CAS  PubMed  Google Scholar 

  • Spielewoy C, Roubert C, Hamon M, Nosten-Bertrand M, Betancur C, Giros B (2000) Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behav Pharmacol 11:279–290

    CAS  PubMed  Google Scholar 

  • Stanford SC (1993) Monoamines in response and adaptation to stress. In: Stanford SC, Salmon P (eds) Stress. From synapse to syndrome. Academic, London, pp 281–331

  • Stanford SC (1995) Central noradrenergic neurones. Pharmacol Ther 68:297–342

    CAS  PubMed  Google Scholar 

  • Starke K (1987) Presynaptic alpha-autoreceptors. Rev Physiol Biochem Pharmacol 107:73–146

    Google Scholar 

  • Stockmeier CA, Shapiro LA, Haycock JW, Thompson PA, Lowy MT (1996) Quantitative subregional distribution of serotonin1A receptors and serotonin transporters in the human dorsal raphe. Brain Res 727:1–12

    CAS  PubMed  Google Scholar 

  • Stone EA, John SM (1991) Further evidence for a glial localization of rat cortical beta-adrenoceptors: studies of in vivo cyclic AMP responses to catecholamines. Brain Res 549:78–82

    CAS  PubMed  Google Scholar 

  • Stone EA, Platt JE (1982) Brain adrenergic receptors and resistance to stress. Brain Res 237:405–414

    CAS  PubMed  Google Scholar 

  • Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708:209–214

    CAS  PubMed  Google Scholar 

  • Surprenant A, Horstman DA, Akbarali H, Limbird LE (1992) A point mutation of the alpha2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 257:977–980

    CAS  PubMed  Google Scholar 

  • Thierry AM, Javoy F, Glowinski J, Kety S (1968) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. J Pharmacol Exp Ther 163:163–171

    CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    CAS  PubMed  Google Scholar 

  • Tjurmina OA, Armando I, Saavedra JM, Goldstein DS, Murphy DL (2002) Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143:4520–4526

    CAS  PubMed  Google Scholar 

  • Torres IL, Gamaro GD, Vasconcellos AP, Silveira R, Dalmaz C (2002) Effects of chronic restraint stress on feeding behavior and on monoamine levels in different brain structures in rats. Neurochem Res 27:519–525

    CAS  PubMed  Google Scholar 

  • Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163:135–150

    CAS  PubMed  Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of alpha2-agonist binding sites in rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects and related adrenergic agents. Brain Res Rev 7:69–101

    CAS  Google Scholar 

  • U’Prichard DC, Kvetnansky R (1980) Central and peripheral adrenergic receptors in acute and repeated immobilization stress. In: Usdin E, Kvetnansky R, Kopin IJ (eds) Catecholamine and stress. Recent advances, developments in neuroscience, vol 8. Elsevier, Amsterdam, pp 299–308

  • Valentino RJ, Foote SL, Page ME (1993) The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 697:171–187

    Google Scholar 

  • Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    CAS  PubMed  Google Scholar 

  • van Kampen M, Kramer M, Hiemke C, Flügge G, Fuchs E (2002) The chronic psychosocial stress paradigm in male tree shrews: evaluation of a novel model for depressive disorders. Stress 5:37–46

    PubMed  Google Scholar 

  • Vergé D, Daval G, Marcinkiewicz M, Patey A, el Mestikawy S, Gozlan H, Hamon M (1986) Quantitative autoradiography of multiple 5HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J Neurosci 6:3474–3482

    PubMed  Google Scholar 

  • Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiology 123:451–481

    CAS  Google Scholar 

  • von Zastrow M (2002) Regulation of G-protein-coupled receptors by phosphorylation and endocytosis. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology. The fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, pp 59–70

  • von Zastrow M, Kobilka BK (1994) Antagonist-dependent and -independent steps in the mechanism of adrenergic receptor internalization. J Biol Chem 269:18448–18452

    PubMed  Google Scholar 

  • Watanabe T, Yanai K (2001) Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med 195:197–217

    CAS  PubMed  Google Scholar 

  • Watanabe Y, McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (1995) Effects of chronic social stress on tyrosine hydroxylase mRNA and protein levels. Brain Res Mol Brain Res 32:176–180

    CAS  PubMed  Google Scholar 

  • Waterhouse BD, Sessler FM, Cheng JT, Woodward DJ, Azizi SA, Moises HC (1988) New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Res Bull 21:425–432

    CAS  PubMed  Google Scholar 

  • Westerink BH, Cremers TI, De Vries JB, Liefers H, Tran N, De Boer P (2002) Evidence for activation of histamine H3 autoreceptors during handling stress in the prefrontal cortex of the rat. Synapse 43:238–243

    CAS  PubMed  Google Scholar 

  • Whitaker-Azmitia PM, Peroutka SJ (1990) The neuropharmacology of serotonin. New York Academy of Sciences, New York

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta-adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207:446–457

    Google Scholar 

  • Zhong P, Ciaranello RD (1995) Transcriptional regulation of hippocampal 5HT1A-receptors by corticosteroid hormones. Mol Brain Res 29:23–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Stefanie Gleisberg, Andreas Heutz, and Miriam Vorwald for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Flügge.

Additional information

The work presented in this review was in part supported by the German Science Foundation (SFB406, C4 to G.F.). M.J.M. was supported by the DFG grant Fu 174/17–1 and EC Training Through Research (ERBFMBICT 961829).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flügge, G., van Kampen, M. & Mijnster, M.J. Perturbations in brain monoamine systems during stress. Cell Tissue Res 315, 1–14 (2004). https://doi.org/10.1007/s00441-003-0807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0807-0

Keywords

Navigation