Skip to main content
Log in

Morphology of neurons cultured from subdivisions of the mouse cochlear nucleus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract.

This study was designed to characterize the dendritic organization of cochlear nucleus (CN) cells grown in primary cell culture and to assess differences among cultures grown from different regions of CN. Cultures were prepared from postnatal mice and processed using microtubule-associated protein 2 (MAP2) or γ-aminobutyric acid (GABA) immunohistochemistry. CN neurons were successfully cultured from preparations grown from either the anteroventral subdivision of the nucleus (AVCN), the posterior region [posteroventral (PVCN) and dorsal (DCN) subnuclei], or the whole CN, although the cultured neurons did not exhibit complex dendritic patterns characteristic of CN neurons in vivo. Neurons cultured from the entire nucleus exhibited an increased rate of survival compared to those cultured from either the anterior or posterior regions, although similar types of cells were observed in all preparations. The majority of cultured CN neurons were GABA-positive and had soma areas that were similar to the areas of immature GABAergic neurons measured in CN sections. Small cells (soma areas ≤60 μm2) with one to three symmetrically organized dendrites and large non-GABAergic cells (≥120 μm2) were also present in significant numbers. Overall, CN cultures consisted of a heterogeneous population of neurons that had less elaborate dendritic organizations than cells of corresponding size that have been described in adult animals in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–H.
Fig. 3A–C.
Fig. 4.
Fig. 5A–F.
Fig. 6A, B.

Similar content being viewed by others

References

  • Abele AE, Scholz KP, Scholz WK, Miller RJ (1990) Excitotoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons. Neuron 4:413–419

    CAS  PubMed  Google Scholar 

  • Adams JC, Mugnaini E (1987) Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy. J Comp Neurol 262:375–401

    CAS  PubMed  Google Scholar 

  • Adams JC, Warr WB (1976) Origins of axons in the cat's acoustic striae determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 170:107–122

    CAS  PubMed  Google Scholar 

  • Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209:809–810

    CAS  PubMed  Google Scholar 

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    CAS  PubMed  Google Scholar 

  • Banker GA, Cowan WM (1979) Further observations of hippocampal neurons in dispersed cell culture. J Comp Neurol 187:469–494

    CAS  PubMed  Google Scholar 

  • Baughman RW, Huettner JE, Jones KA, Khan AA (1991) Cell culture of neocortex and basal forebrain from postnatal rats. In: Banker G, Goslin K (eds) Culturing nerve cells. MIT Press, Cambridge, pp 227–249

  • Benson DL, Watkins FH, Steward O, Banker G (1994) Characterization of GABAergic neurons in hippocampal cell cultures. J Neurocytol 23:279–295

    CAS  PubMed  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–299

    CAS  PubMed  Google Scholar 

  • Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    CAS  PubMed  Google Scholar 

  • Caceres A, Banker GA, Binder L (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J Neurosci 6:714–722

    CAS  PubMed  Google Scholar 

  • Cant NB, Morest DK (1984) The structural basis for stimulus coding in the cochlear nucleus of the cat. In: Berlin CI (ed) Hearing science. College Hill Press, San Diego, pp 371–421

  • Caserta MT, Barker JL (1994) Development of the GABAergic phenotype in murine spinal cord-dorsal root ganglion cultures. Int J Dev Neurosci 12:753–765

    CAS  PubMed  Google Scholar 

  • Chauvet N, Drian M-J, Privat A (1995) Immunocytochemical study of phenotypic plasticity of cultured dorsal root ganglion neurons during development. Int J Dev Neurosci 13:673–683

    Article  CAS  PubMed  Google Scholar 

  • Coleman JR, O'Connor P (1979) Effects of monaural and binaural sound deprivation on cell development in the anteroventral cochlear nucleus of rats. Exp Neurol 64:553–566

    CAS  PubMed  Google Scholar 

  • Coleman JR, Blatchley BJ, Williams JE (1982) Development of the dorsal and ventral cochlear nuclei in rat and effects of acoustic deprivation. Dev Brain Res 4:119–123

    Google Scholar 

  • De Camilli P, Miller PE, Navone F, Theurkauf WE, Vallee RB (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience 11:819–846

    Google Scholar 

  • Dodson HC, Bannister LH, Douek EE (1994) Effects of unilateral deafening on the cochlear nucleus of the guinea pig at different ages. Dev Brain Res 80:261–267

    CAS  Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  • Evans EF (1992) Auditory processing of complex sounds: an overview. Philos Trans R Soc Lond Biol 336:295–306

    CAS  PubMed  Google Scholar 

  • Fitzakerley JL (2001) Survival and differentiation of neurons cultured from the mouse cochlear nucleus on extracellular matrix components. Neurosci Lett 316:183–187

    Article  CAS  PubMed  Google Scholar 

  • Fitzakerley JL, Schweitzer L (1996) Morphology of neurons cultured from subdivisions of the cochlear nucleus. Soc Neurosci Abstr 22:127

    Google Scholar 

  • Fitzakerley JL, Kitko RA, Schaefer KL, Manis PB (1995) Characteristics of two transient outward currents in cultured neonatal cochlear nucleus neurons. Assoc Res Otolaryngol Abstr 18:128

    Google Scholar 

  • Fitzakerley JL, Schaefer KL, Kitko RA, Manis PB (1997) Properties of cochlear nucleus neurons in primary culture. Hear Res 114:148–168

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B, Perez-Gonzalez H (1996) Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol 372:309–326

    PubMed  Google Scholar 

  • Hack NJ, Charters KM, Parks TN, Kater SB (1996) Dissociated cell cultures of chick brain stem auditory nuclei. Soc Neurosci Abstr 22:126

    Google Scholar 

  • Hendry SHC, Bhandari MA (1992) Neuronal organization and plasticity in adult monkey visual cortex: immunoreactivity for microtubule-associated protein 2. Vis Neurosci 9:445–459

    CAS  PubMed  Google Scholar 

  • Hoch DB, Dingledine R (1986) GABAergic neurons in rat hippocampal culture. Dev Brain Res 25:53–64

    CAS  Google Scholar 

  • Kandler K, Friauf E (1993) Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol 328:161–184

    CAS  PubMed  Google Scholar 

  • Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol 186:443–465

    CAS  PubMed  Google Scholar 

  • Legido A, Reichlin S, Dichter MA, Buchhalter J (1990) Expression of somatostatin and GABA immunoreactivity in cultures of rat hippocampus. Peptides 11:103–109

    CAS  PubMed  Google Scholar 

  • Lorente de No R (1933) Anatomy of the eighth nerve. The central projection of the nerve endings of the internal ear. Laryngoscope 43:1–38

    Google Scholar 

  • Manis PB (1990) Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J Neurosci 10:2338–2351

    CAS  PubMed  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880

    CAS  PubMed  Google Scholar 

  • Manis PB, Molitor SC (1996) N-methyl-d-aspartate receptors at parallel fiber synapses in the dorsal cochlear nucleus. J Neurophysiol 76:1639–1656

    CAS  PubMed  Google Scholar 

  • Moore DR (1985) Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Otolaryngol 421:19–30

    CAS  Google Scholar 

  • Moore JK, Moore RY (1987) Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. J Comp Neurol 260:157–174

    CAS  PubMed  Google Scholar 

  • Moore JK, Osen KK, Storm-Mathisen J, Ottersen OP (1996) Gamma-aminobutyric acid and glycine in the baboon cochlear nuclei: an immunocytochemical colocalization study with reference to interspecies differences in inhibitory systems. J Comp Neurol 369:497–519

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Rogers NJ, O'Leary SJ (1998) Loss of cochlear nucleus neurons following aminoglycoside antibiotics or cochlear removal. Ann Otol Rhinol Laryngol 107:337–343

    CAS  PubMed  Google Scholar 

  • Mugnaini E (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J Comp Neurol 235:61–81

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL Jr, Korte G (1980a) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J Neurocytol 9:537–570

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980b) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat and mouse. J Comp Neurol 191:581–606

    CAS  PubMed  Google Scholar 

  • Muller HW, Seifert W (1982) A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res 8:195–204

    CAS  PubMed  Google Scholar 

  • Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3:2043–2053

    CAS  PubMed  Google Scholar 

  • Oertel D (1985) Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. J Acoust Soc Am 78:328–333

    CAS  PubMed  Google Scholar 

  • Oertel D (1991) The role of intrinsic neuronal properties in the encoding of auditory information in the cochlear nuclei. Curr Opin Neurobiol 1:221–228

    CAS  PubMed  Google Scholar 

  • Oliver DL, Potashner SJ, Jones DR, Morest DK (1983) Selective labeling of spiral ganglion and granule cells with d-aspartate in the auditory system of cat and guinea pig. J Neurosci 3:455–472

    CAS  PubMed  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in cat. J Comp Neurol 136:453–484

    CAS  PubMed  Google Scholar 

  • Osen KK (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J Comp Neurol 144:355–372

    CAS  PubMed  Google Scholar 

  • Osen KK, Storm-Mathisen J, Ottersen OP, Dihle B (1995) Glutamate is concentrated in and released from parallel fiber terminals in the dorsal cochlear nucleus: a quantitative immunocytochemical analysis in guinea pig. J Comp Neurol 357:482–500

    CAS  PubMed  Google Scholar 

  • Palmer AR (1987) Physiology of the cochlear nerve and cochlear nucleus. Br Med Bull 43:838–855

    CAS  PubMed  Google Scholar 

  • Parks TN (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183:665–678

    CAS  PubMed  Google Scholar 

  • Parks TN, Jackson H (1984) A developmental gradient of dendritic loss in the avian cochlear nucleus occurring independently of primary afferents. J Comp Neurol 227:459–466

    CAS  PubMed  Google Scholar 

  • Peyret D, Geffard M, Aran J-M (1986) GABA immunoreactivity in the primary nuclei of the auditory central nervous system. Hear Res 23:115–121

    CAS  PubMed  Google Scholar 

  • Ray J, Peterson DA, Schinstine M, Gage FH (1993) Proliferation, differentiation and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci U S A 90:3602–3606

    CAS  PubMed  Google Scholar 

  • Roberts RC, Ribak CE (1987) GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol 258:267–280

    CAS  PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: Primary auditory neurons and their targets. Ann Rev Neurosci 25:51–101

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Hyson RL, Durham D (1990) Afferent regulation of neurons in the brain stem auditory system. J Neurobiol 21:169–196

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Pongstaporn T, Wright DD, Sharp AH (1995) Inositol 1, 4, 5-trisphosphate receptors: immunocytochemical localization in the dorsal cochlear nucleus. J Comp Neurol 358:102–118

    CAS  PubMed  Google Scholar 

  • Schweitzer L, Cant NB (1985) Development of oriented dendritic fields in the dorsal cochlear nucleus of the hamster. Neuroscience 16:969–978

    CAS  PubMed  Google Scholar 

  • Schweitzer L, Robbins AJ, Slotkin TA (1989) Dendritic development of Purkinje and granule cells in the cerebellar cortex of rats treated postnatally with alpha-difluoromethylornithine. J Neuropathol Exp Neurol 48:11–22

    CAS  PubMed  Google Scholar 

  • Spitzer NC, Debaca RC, Allen KA, Holliday J (1993) Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons. J Comp Neurol 337:168–175

    CAS  PubMed  Google Scholar 

  • Stichel CC, Muller HW (1991) Dissociated cell culture of rat cerebral cortical neurons in serum-free, conditioned media: GABA-immunopositive neurons. Dev Brain Res 64:145–154

    CAS  Google Scholar 

  • Suneja SK, Benson CG, Gross J, Potashner SJ (1995) Evidence for glutamatergic projections from the cochlear nucleus to the superior olive and the ventral nucleus of the lateral lemniscus. J Neurochem 64:161–171

    CAS  PubMed  Google Scholar 

  • Thompson GC, Cortez AM, Lam DM-K (1985) Localization of GABA immunoreactivity in the auditory brainstem of guinea pigs. Brain Res 339:119–122

    CAS  PubMed  Google Scholar 

  • Tierney TS, Russell FA, Moore DR (1997) Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378:295–306

    Article  CAS  PubMed  Google Scholar 

  • Trenkner E (1991) Cerebellar cells in culture. In: Banker G, Goslin K (eds) Culturing nerve cells. MIT Press, Cambridge, pp 283–307

  • Trenkner E, Sidman RL (1977) Histogenesis of mouse cerebellum in microwell cultures: cell reaggregation and migration, fiber and synapse formation. J Cell Biol 75:915–940

    CAS  PubMed  Google Scholar 

  • Trune DR (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size and density of its neurons. J Comp Neurol 209:409–424

    CAS  PubMed  Google Scholar 

  • Trune DR (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J Comp Neurol 209:425–434

    CAS  PubMed  Google Scholar 

  • Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci U S A 83:3012–3016

    CAS  PubMed  Google Scholar 

  • Walker CR, Peacock JH (1982) Development of GABAergic functions of dissociated hippocampal cultures from fetal mice. Dev Brain Res 2:541–555

    Google Scholar 

  • Waller HJ, Godfrey DA, Chen KJ (1996) Effects of parallel fiber stimulation on neurons of rat dorsal cochlear nucleus. Hear Res 98:169–179

    Article  CAS  PubMed  Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474

    CAS  PubMed  Google Scholar 

  • Warr WB (1972) Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Res 40:247–270

    CAS  PubMed  Google Scholar 

  • Webster DB (1983) Auditory neuronal sizes after a unilateral conductive hearing loss. Exp Neurol 79:130–140

    CAS  PubMed  Google Scholar 

  • Webster DB, Trune DR (1982) Cochlear nuclear complex of mice. Am J Anat 163:103–130

    CAS  PubMed  Google Scholar 

  • Webster DB, Webster M (1977) Neonatal sound deprivation affects brain stem nuclei. Arch Otolaryngol 103:392–396

    CAS  PubMed  Google Scholar 

  • Weedman DL, Ryugo DK (1996) Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites. J Comp Neurol 371:311–324

    Article  CAS  PubMed  Google Scholar 

  • Weedman DL, Pongstaporn T, Ryugo DK (1996) Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: mossy fiber endings and their targets. J Comp Neurol 369:345–360

    Article  CAS  PubMed  Google Scholar 

  • Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA (1986) Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res 380:7–18

    CAS  PubMed  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience 22:897–912

    CAS  PubMed  Google Scholar 

  • Woodson W, Nitecka L, Ben-Ari Y (1989) Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. J Comp Neurol 280:254–271

    CAS  PubMed  Google Scholar 

  • Wright DD, Ryugo DK (1996) Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. J Comp Neurol 365:159–172

    Article  CAS  PubMed  Google Scholar 

  • Young ED (1984) Response characteristics of neurons of the cochlear nuclei. In: Berlin CI (ed) Hearing science: recent advances. College Hill Press, San Diego, pp 423–460

    Google Scholar 

Download references

Acknowledgements.

The authors would like to thank Wendy Heck, Robert Molloy, Shaun Morris, Betsey Wiegman, Mary Kay Mattila and Denise Gregoire for their assistance in data analysis and Darryl Ballard, Jane Peng and Matt Ruona for their technical support. We would also like to thank Drs. Martha Bickford and Ken Balak for their comments on early versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet L. Fitzakerley.

Additional information

These experiments were supported by NSF EPSCoR grant no. OSR-9452895 awarded to L.S. and by a Deafness Research Foundation grant awarded to J.L.F.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzakerley, J.L., Schweitzer, L. Morphology of neurons cultured from subdivisions of the mouse cochlear nucleus. Cell Tissue Res 311, 145–158 (2003). https://doi.org/10.1007/s00441-002-0690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0690-0

Keywords

Navigation