Skip to main content
Log in

Boundary of the range of transient random walk

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the boundary of the range of simple random walk on \(\mathbb {Z}^d\) in the transient case \(d\ge 3\). We show that volumes of the range and its boundary differ mainly by a martingale. As a consequence, we obtain an upper bound on the variance of order \(n\log n\) in dimension three. We also establish a Central Limit Theorem in dimension four and larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asselah, A., Schapira, B.: Moderate deviations for the range of a transient walk: path concentration. arXiv:1601.03957

  2. Benjamini, I., Kozma, G., Yadin, A., Yehudayoff, A.: Entropy of random walk range. Ann. Inst. Henri Poincaré Probab. Stat. 46, 1080–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, N., Yadin, A.: Condensation of random walks and the Wulff crystal. arXiv:1305.0139

  4. Chen, X.: Random walk intersections, large deviations and related topics. In: Mathematical Surveys and Monographs, vol. 157. AMS, New York (2009)

  5. Durrett, R.: Probability: Theory and Examples, vol. 4. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  6. Dvoretzky, A., Erdós, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 353–367. University of California Press, Berkeley (1951)

  7. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21, 673–709 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hammersley, J.M.: Generalization of the fundamental theorem on subadditive functions. Proc. Cambr. Phil. Soc. 58, 235–238 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jain, N.C., Pruitt, W.E.: The range of transient random walk. J. Analyze Math. 24, 369–393 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawler, G.F., Limic, V.: Random walk: a modern introduction. In: Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

  11. Le Gall, J.-F.: Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local d’intersection. Commun. Math. Phys. 104, 471–507 (1986)

    Article  MATH  Google Scholar 

  12. Mathieu, P., Sisto, A.: Deviation inequalities and CLT for random walks on acylindrically hyperbolic groups. arXiv:1411.7865

  13. Okada, I.: The inner boundary of random walk range. J. Math. Soc. Japan 68, 939–959 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Okada, I.: Frequently visited site of the inner boundary of simple random walk range. arXiv:1409.8368

Download references

Acknowledgments

We would like to thank Gregory Maillard for discussions at an early stage of this work. We thank Pierre Mathieu for mentioning that we omitted to show that the limiting term in (1.14) was nonzero, and Perla Sousi for mentioning a few other inaccuracies. Finally, we thank an anonymous referee for his very careful reading, and his numerous corrections and suggestions which greatly improved the presentation. A.A. received support of the A\(^*\)MIDEX Grant (ANR-11-IDEX-0001-02) funded by the French Government “Investissements d’Avenir” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Schapira.

Appendix: Estimates on ranges

Appendix: Estimates on ranges

In this section, we prove Proposition 1.5. We first introduce some other range-like sets allowing us to use the approach of Jain and Pruitt [9]. Recall that the sets \(\mathcal {R}_{n,V}\) are disjoint, and for \(U\subset V_0\), define

$$\begin{aligned} \overline{\mathcal {R}}_{n,U}:=\bigcup _{V\supset U} \mathcal {R}_{n,V}=\{S_k\ :\ S_k \notin {\mathcal R}_{k-1} \text { and }S_i\notin (S_k+U),\, i\le k-1,\, 1\le k\le n\}.\nonumber \\ \end{aligned}$$
(5.15)

Next for \(U\subset V_0\), define

$$\begin{aligned} \alpha (U)=| \overline{\mathcal {R}}_{n,U}| - \mathbb {E}(| \overline{\mathcal {R}}_{n,U}|) \qquad \text {and}\qquad \beta (U)=| \mathcal {R}_{n,U}| -\mathbb {E}(| \mathcal {R}_{n,U}|). \end{aligned}$$

The definition (5.15) yields

$$\begin{aligned} \alpha (U)=\sum _{V\supset U} \beta (V), \end{aligned}$$

and this relation is inverted as follows:

$$\begin{aligned} \beta (V)=\sum _{U\supset V} (-1)^{|U\backslash V|}\, \alpha (U). \end{aligned}$$

As a consequence, for \(V\subset V_0\),

$$\begin{aligned} \text {Var}(|\mathcal {R}_{n,V} |)=\mathbb {E}(\beta ^2(V))\le 2^{|V_0\backslash V|}\, \sum _{U\supset V} \mathbb {E}(\alpha ^2(U)). \end{aligned}$$

We will see below that each \(\overline{\mathcal {R}}_{n,V}\) has the same law as a range-like functional that Jain and Pruitt analyze by using a last passage decomposition, after introducing some new variables. But let us give more details now. So first, we fix some \(V\subset V_0\), and for \(n\in \mathbb {N}\), set \(Z_n^n=1\), and

$$\begin{aligned} \begin{array}{llll} Z_i &{}=&{} \mathbf{1}(\{S_{i+k}\not \in (S_i+\overline{V} )\quad \forall k\ge 1\}) &{}\quad \forall i\in \mathbb {N},\\ Z_i^n &{}=&{} \mathbf{1}(\{S_{i+k}\not \in (S_i+\overline{V}) \quad \forall k=1,\dots ,n-i\}) &{}\quad \forall i<n \\ W_i^n &{}=&{}Z^n_i-Z_i &{}\quad \forall i\le n, \end{array} \end{aligned}$$

where

$$\begin{aligned} \overline{V}= V\cup \{0\}. \end{aligned}$$

A key point in this decomposition is that \(Z_n\) and \(Z^n_i\) are independent. Now, define

$$\begin{aligned} \underline{\mathcal {R}}_{n,V}=\{S_k:\ S_i\not \in S_k+\overline{V},\ n\ge i>k,\ 0\le k< n\}, \quad \text {and}\quad |\underline{\mathcal {R}}_{n,V}|=\sum _{i=0}^{n-1} Z^n_i.\nonumber \\ \end{aligned}$$
(5.16)

Since the increments are symmetric and independent, \(|\overline{\mathcal {R}}_{n,V}|\) and \(|\underline{\mathcal {R}}_{n,V}|\) are equal in law. Now, equality (5.16) reads as

$$\begin{aligned} |\underline{\mathcal {R}}_{n,V}|=\sum _{i=0}^{n-1} Z_i+\sum _{i=0}^{n-1} W^n_i. \end{aligned}$$

Now using that Var\((|\overline{\mathcal {R}}_{n,V}|)\le \mathbb {E}[( |\overline{\mathcal {R}}_{n,V}|-\sum _{i\le n-1} \mathbb {E}[Z_i])^2]\), and that \((a+b)^2\le 2(a^2+b^2)\) we obtain

$$\begin{aligned} \text {Var}(|\underline{\mathcal {R}}_{n,V}|) \le 2\sum _{i=1}^{n-1} \text {Var}(Z_i)+ 4\sum _{j=1}^{n-1}\sum _{i=0}^{j-1}\text {Cov}(Z_i,Z_j)+ 4\sum _{j=1}^{n-1}\sum _{i=0}^j \mathbb {E}(W^n_iW^n_j).\nonumber \\ \end{aligned}$$
(5.17)

Next for \(i<j< n\), we have (recall the definition (2.1))

$$\begin{aligned} \mathbb {E}\left( W^n_i\, W^n_j\right)= & {} \mathbb {P}\left( n<H^{(i+1)}_{S_i+\overline{V}}<\infty ,\, n<H^{(j+1)}_{S_j+\overline{V}}<\infty \right) \\= & {} \sum _{x\notin \overline{V}}\mathbb {P}(S_{j-i}=x,\ H_{\overline{V}}>j-i)\, \mathbb {P}_x( n-j<H_{\overline{V}}\\&\quad<\infty ,\ n-j<H_{x+\overline{V}}<\infty )\\\le & {} \sum _{x\not \in V}\mathbb {P}(S_{j-i}=x,\ H_{\overline{V}}>j-i)\, \mathbb {P}_x( n-j<H_{\overline{V}}\\&\quad<\infty ,\ n-j<H_{x+\overline{V}}<\infty ), \end{aligned}$$

where for the second equality we just used the Markov property and translation invariance of the walk. The last inequality is written to cover as well the case \(i=j\). Therefore,

$$\begin{aligned} \sum _{i=0}^j \mathbb {E}\left( W^n_iW^n_j\right)\le & {} \sum _{x\not \in V} G_j(0,x) \, \mathbb {P}_x(H_{\overline{V}}<\infty ,\ n-j<H_{x+\overline{V}}<\infty ) \\\le & {} \sum _{y,z\in \overline{V}}\, \sum _{x\notin V}\, G_j(0,x)\, \mathbb {P}_x(H_y<\infty ,\ n-j<H_{x+z}<\infty ). \end{aligned}$$

Then Lemma 4 of [9] shows that

$$\begin{aligned} \sum _{i=0}^j \mathbb {E}\left( W^n_iW^n_j\right) = \left\{ \begin{array}{l@{\quad }l} \mathcal {O}\left( \sqrt{\frac{j}{n-j}}\right) &{} \text {if }d=3\\ \mathcal {O}\left( \frac{\log j}{n-j}\right) &{} \text {if }d=4\\ \mathcal {O}\left( (n-j)^{1-d/2}\right) &{} \text {if }d\ge 5, \end{array} \right. \end{aligned}$$

and thus

$$\begin{aligned} \sum _{j=1}^{n-1}\sum _{i=0}^j \mathbb {E}\left( W^n_iW^n_j\right) = \left\{ \begin{array}{l@{\quad }l} \mathcal {O}(n) &{} \text {if }d=3\\ \mathcal {O}((\log n)^2) &{} \text {if }d=4\\ \mathcal {O}(1) &{} \text {if }d\ge 5. \end{array} \right. \end{aligned}$$
(5.18)

Now, for \(i<j<n\), by using that \(Z_i^j\) and \(Z_j\) are independent, we get

$$\begin{aligned} \text {Cov}(Z_i,Z_j)=-\text {Cov}(W^j_i, Z_j). \end{aligned}$$

On the other hand, assuming \(i<j\le n\),

$$\begin{aligned} \mathbb {E}(W^j_iZ_j)= & {} \mathbb {P}\left( j<H^{(i+1)}_{S_i+\overline{V}}<\infty ,\, H^{(j+1)}_{S_j+\overline{V}}=\infty \right) \\= & {} \sum _{x\not \in \overline{V}}\, \mathbb {P}(S_{j-i}=x,\, H_{\overline{V}}>j-i)\, \mathbb {P}_x(H_{\overline{V}}<\infty ,\, H_{x+\overline{V}}=\infty ). \end{aligned}$$

Since in addition,

$$\begin{aligned} \mathbb {E}(Z_j)=\mathbb {P}_x(H_{x+\overline{V}}=\infty )\quad \text {for all }x, \end{aligned}$$

and

$$\begin{aligned} \mathbb {E}(W_i^j)= \sum _{x\notin \overline{V}} \, \mathbb {P}( S_{j-i} =x,\, H_{\overline{V}}>j-i)\, \mathbb {P}_x(H_{\overline{V}}<\infty ), \end{aligned}$$

we deduce that

$$\begin{aligned} \text {Cov}(Z_i,Z_j)=\sum _{x\not \in \overline{V}}\mathbb {P}(S_{j-i}=x,\, H_{\overline{V}}>j-i)\, b_V(x), \end{aligned}$$

with

$$\begin{aligned} b_V(x):=\mathbb {P}_x(H_{\overline{V}}<\infty )\, \mathbb {P}_x(H_{x+\overline{V}}=\infty )- \mathbb {P}_x(H_{\overline{V}}<\infty ,\ H_{x+\overline{V}}=\infty ).\nonumber \\ \end{aligned}$$
(5.19)

Now we need the following equivalent of Lemma 5 of [9].

Lemma 5.4

For any \(V\subset V_0\), and \(x\notin \overline{V}\),

$$\begin{aligned} b_V(x)=\mathbb {P}_x(H_{\overline{V}}<H_{x+\overline{V}}<\infty )\mathbb {P}_x(H_{\overline{V}}=\infty )+\mathcal {E}(x,V), \end{aligned}$$

with

$$\begin{aligned} \mathcal {E}(x,V):=\sum _{z\in x+\overline{V}}\mathbb {P}_x(S_{H_{x+\overline{V}}}=z,\, H_{x+\overline{V}}<H_{\overline{V}}) (\mathbb {P}_z(H_{\overline{V}}<\infty )-\mathbb {P}_x(H_{\overline{V}}<\infty )). \end{aligned}$$

Moreover,

$$\begin{aligned} |\mathcal {E}(x,V)|= \mathcal {O}\left( \frac{1}{\Vert x\Vert ^{d-1}}\right) . \end{aligned}$$

Assuming this lemma for a moment, we get

$$\begin{aligned} a_j= & {} \sum _{i=0}^{j-1}\, \text {Cov}(Z_i,Z_j)=\sum _{i=0}^{j-1} \sum _{x\not \in \overline{V}}\, \mathbb {P}(S_{j-i}=x,\, H_{\overline{V}}>j-i)\, b_V(x)\\= & {} \mathcal {O}\left( \sum _{x\notin \overline{V}} \frac{G_{j}(0,x)}{\Vert x\Vert ^{d-1}}\right) = \mathcal {O}\left( \sum _{1\le \Vert x\Vert \le j} \frac{1}{\Vert x\Vert ^{2d-3}}\right) \\= & {} \left\{ \begin{array}{l@{\quad }l} \mathcal {O}(\log j)&{} \text {if }d=3\\ \mathcal {O}(1) &{} \text {if }d\ge 4, \end{array} \right. \end{aligned}$$

from which we deduce that

$$\begin{aligned} \sum _{j=0}^{n-1} a_j = \left\{ \begin{array}{l@{\quad }l} \mathcal {O}(n \log n)&{} \text {if }d=3\\ \mathcal {O}(n) &{} \text {if }d\ge 4. \end{array} \right. \end{aligned}$$
(5.20)

Then Proposition 1.5 follows from (5.17), (5.18) and (5.20).

Proof of Lemma 5.4

Note first that

$$\begin{aligned} b_V(x)= & {} \mathbb {P}_x(H_{\overline{V}}<\infty ,\ H_{x+\overline{V}}<\infty )- \mathbb {P}_x(H_{\overline{V}}<\infty )\mathbb {P}_x(H_{x+\overline{V}}<\infty )\\= & {} \mathbb {P}_x(H_{\overline{V}}<H_{x+\overline{V}}<\infty )+ \mathbb {P}_x(H_{x+\overline{V}}<H_{\overline{V}}<\infty )\\&-\,\mathbb {P}_x(H_{\overline{V}}<\infty )\mathbb {P}_x(H_{x+\overline{V}}<\infty ). \end{aligned}$$

Moreover,

$$\begin{aligned} \mathbb {P}_x(H_{x+\overline{V}}<H_{\overline{V}}<\infty )= & {} \sum _{z\in x+\overline{V}} \mathbb {P}_x(S_{H_{x+\overline{V}}}=z,\ H_{x+\overline{V}}<H_{\overline{V}})\mathbb {P}_z(H_{\overline{V}}<\infty )\\= & {} \mathbb {P}_x(H_{x+\overline{V}}<H_{\overline{V}})\mathbb {P}_x(H_{\overline{V}}<\infty )+\mathcal {E}(x,V). \end{aligned}$$

The first assertion of the lemma follows. The last assertion is then a direct consequence of standard asymptotics on the gradient of the Green’s function (see for instance [10, Corollary 4.3.3]). \(\square \)

Remark 5.5

By adapting the argument in [9] we could also prove that in dimension 3, \(\text {Var}(|\underline{\mathcal {R}}_{n,V}|) \sim \sigma ^2 n \log n\), for some constant \(\sigma >0\), and then obtain a central limit theorem for this modified range. However it is not clear how to deduce from it an analogous result for \(|\mathcal {R}_{n,V}|\), which would be useful in view of a potential application to the boundary of the range.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asselah, A., Schapira, B. Boundary of the range of transient random walk. Probab. Theory Relat. Fields 168, 691–719 (2017). https://doi.org/10.1007/s00440-016-0722-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0722-4

Mathematics Subject Classification

Navigation