Skip to main content

Advertisement

Log in

Predicting ExWAS findings from GWAS data: a shorter path to causal genes

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

GWAS has identified thousands of loci associated with disease, yet the causal genes within these loci remain largely unknown. Identifying these causal genes would enable deeper understanding of the disease and assist in genetics-based drug development. Exome-wide association studies (ExWAS) are more expensive but can pinpoint causal genes offering high-yield drug targets, yet suffer from a high false-negative rate. Several algorithms have been developed to prioritize genes at GWAS loci, such as the Effector Index (Ei), Locus-2-Gene (L2G), Polygenic Prioritization score (PoPs), and Activity-by-Contact score (ABC) and it is not known if these algorithms can predict ExWAS findings from GWAS data. However, if this were the case, thousands of associated GWAS loci could potentially be resolved to causal genes. Here, we quantified the performance of these algorithms by evaluating their ability to identify ExWAS significant genes for nine traits. We found that Ei, L2G, and PoPs can identify ExWAS significant genes with high areas under the precision recall curve (Ei: 0.52, L2G: 0.37, PoPs: 0.18, ABC: 0.14). Furthermore, we found that for every unit increase in the normalized scores, there was an associated 1.3–4.6-fold increase in the odds of a gene reaching exome-wide significance (Ei: 4.6, L2G: 2.5, PoPs: 2.1, ABC: 1.3). Overall, we found that Ei, L2G, and PoPs can anticipate ExWAS findings from widely available GWAS results. These techniques are therefore promising when well-powered ExWAS data are not readily available and can be used to anticipate ExWAS findings, allowing for prioritization of genes at GWAS loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Source code can be accessed through Github upon publication.

References

Download references

Funding

The Richards research group is supported by the Canadian Institutes of Health Research (CIHR: 365825; 409511, 100558, 169303), the McGill Interdisciplinary Initiative in Infection and Immunity (MI4), the Lady Davis Institute of the Jewish General Hospital, the Jewish General Hospital Foundation, the Canadian Foundation for Innovation, the NIH Foundation, Cancer Research UK, Genome Québec, the Public Health Agency of Canada, McGill University, Cancer Research UK [grant umber C18281/A29019] and the Fonds de Recherche Québec Santé (FRQS). JBR is supported by a FRQS Mérite Clinical Research Scholarship. Support from Calcul Québec and Compute Canada is acknowledged. TwinsUK is funded by the Welcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London. These funding agencies had no role in the design, implementation or interpretation of this study.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: KL and JBR. Data analyses: KL, YF, and VF. Manuscript writing: KL, YF, YC, SY, and JBR. Supervision: JBR. Interpretation of data: all authors. All authors were involved in the preparation and revision of the manuscript.

Corresponding author

Correspondence to J. Brent Richards.

Ethics declarations

Conflict of interest

JBR’s institution has received investigator-initiated grant funding from Eli Lilly, GlaxoSmithKline and Biogen for projects unrelated to this research. JBR is the CEO of 5 Prime Sciences (www.5primesciences.com), which provides research services for biotech, pharma and venture capital companies for projects unrelated to this research. VF, YF, and TL are employees of 5 Prime Sciences. Authors KYHL, YC, SY declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 721 KB)

Supplementary file2 (XLSX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K.Y.H., Farjoun, Y., Forgetta, V. et al. Predicting ExWAS findings from GWAS data: a shorter path to causal genes. Hum Genet 142, 749–758 (2023). https://doi.org/10.1007/s00439-023-02548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02548-y

Navigation