Skip to main content
Log in

Toward a consensus on SNP and STR mutation rates on the human Y-chromosome

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The mutation rate on the Y-chromosome matters for estimating the time-to-the-most-recent-common-ancestor (TMRCA, i.e. haplogroup age) in population genetics, as well as for forensic, medical, and genealogical studies. Large-scale sequencing efforts have produced several independent estimates of Y-SNP mutation rates. Genealogical, or pedigree, rates tend to be slightly faster than evolutionary rates obtained from ancient DNA or calibrations using dated (pre)historical events. It is, therefore, suggested to report TMRCAs using an envelope defined by the average aDNA-based rate and the average pedigree-based rate. The current estimate of the “envelope rate” is 0.75–0.89 substitutions per billion base pairs per year. The available Y-SNP mutation rates can be applied to high-coverage data from the entire X-degenerate region, but other datasets may demand recalibrated rates. While a consensus on Y-SNP rates is approaching, the debate on Y-STR rates has continued for two decades, because multiple genealogical rates were consistent with each other but three times faster than the single evolutionary estimate. Applying Y-SNP and Y-STR rates to the same haplogroups recently helped to clarify the issue. Genealogical and evolutionary STR rates typically provide lower and upper bounds of the “true” (SNP-based) age. The genealogical rate often—but not always—works well for haplogroups less than 7000 years old. The evolutionary rate, although calibrated using recent events, inflates ages of young haplogroups and deflates the age of the entire Y-chromosomal tree, but often provides reasonable estimates for intermediate ages (old haplogroups). Future rate estimates and accumulating case studies should further clarify the Y-SNP rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamov D, Guryanov V, Karzhavin S, Tagankin V, Urasin V (2015) Defining a new rate constant for Y-chromosome SNPs based on full sequencing data. Russ J Genet Geneal 1:3–36

    Google Scholar 

  • Amster G, Sella G (2016) Life history effects on the molecular clock of autosomes and sex chromosomes. Proc Natl Acad Sci USA 113(6):1588–1593. doi:10.1073/pnas.1515798113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balanovsky O, Dibirova K, Dybo A, Mudrak O, Frolova S, Kuznetsova M, Radzhabov M, Balaganskaya O, Romanov A (2011) Europe PMC funders group parallel evolution of genes and languages in the caucasus region. Mol Biol Evol 28:2905–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balanovsky O, Zhabagin M, Agdzhoyan A, Chukhryaeva M, Zaporozhchenko V, Utevska O, Highnam G, Sabitov Z, Greenspan E, Dibirova K, Skhalyakho R, Kuznetsova M, Koshel S, Yusupov Y, Nymadawa P, Zhumadilov Z, Pocheshkhova E, Haber M, Zalloua PA, Yepiskoposyan L, Dybo A, Tyler-smith C, Balanovska E (2015) Deep phylogenetic analysis of haplogroup G1 provides estimates of SNP and STR mutation rates on the human Y-chromosome and reveals migrations of Iranic speakers. PLoS One 10(4):e0122968. doi:10.1371/journal.pone.0122968

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballantyne KN, Goedbloed M, Fang R, Schaap O, Lao O, Wollstein A, Choi Y, Van Duijn K, Vermeulen M, Brauer S, Decorte R, Poetsch M, Von Wurmb-schwark N, De Knijff P, Labuda D, Roewer L, Ploski R, Dobosz T, Henke L, Knoblauch H (2010) Mutability of Y-chromosomal microsatellites : rates, characteristics, molecular bases, and forensic implications. Am J Hum Genet 87:341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgarella C, Navascue M (2011) Mutation rate estimates for 110 Y-chromosome STRs combining population and father–son pair data. Eur J Hum Genet 19:70–75

    Article  PubMed  Google Scholar 

  • Cox MP (2008) Accuracy of molecular dating with the rho statistic: deviations from coalescent expectations under a range of demographic models. Hum. Biol 80:335–357. doi:10.3378/1534-6617-80.4.335

  • Da Fré NN, Rodenbusch R, Gastaldo AZ, Hanson E, Ballantyne J, Alho CS (2015) Genetic data and de novo mutation rates in father–son pairs of 23 Y-STR loci in Southern Brazil population. Int J Legal Med 129:1221–1223

    Article  PubMed  Google Scholar 

  • Di Giacomo F, Luca F, Popa LO, Akar N, Anagnou N, Banyko J, Brdicka R, Barbujani G, Papola F, Ciavarella G, Cucci F, Di Stasi L, Gavrila L, Kerimova MG, Kovatchev D, Kozlov AI, Loutradis A, Mandarino V, Mammi’ C, Michalodimitrakis EN, Paoli G, Pappa KI, Pedicini G, Terrenato L, Tofanelli S, Malaspina P, Novelletto A (2004) Y chromosomal haplogroup J as a signature of the post-neolithic colonization of Europe. Hum Genet 115(5):357–371 (PubMed PMID: 15322918)

    Article  CAS  PubMed  Google Scholar 

  • Dulik MC, Zhadanov SI, Osipova LP, Askapuli A, Gau L, Gokcumen O, Rubinstein S, Schurr TG (2012) Mitochondrial DNA and Y chromosome variation provides evidence for a recent common ancestry between native Americans and indigenous Altaians. Am J Hum Genet 90(2):229–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenner JN (2005) Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am J Phys Anthropol 423:415–423

    Article  Google Scholar 

  • Forster P, Harding R, Torroni A, Bandelt H (1996) Origin and evolution of native American mtDNA variation : a reappraisal. Am J Hum Genet 59:935–945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francalacci P, Morelli L, Angius A, Berutti R, Reinier F, Atzeni R, Pilu R, Busonero F, Maschio A, Zara I, Sanna D, Useli A, Urru M, Marcelli M, Cusano R, Oppo M, Zoledziewska M, Pitzalis M, Deidda F, Porcu E, Poddie F, Kang H, Lyons R, Tarier B, Gresham J, Li B, Tofanelli S, Alonso S, Dei M, Lai S, Mulas A, Whalen M, Uzzau S, Jones C, Schlessinger D, Abecasis G, Sanna S, Sidore C, Cucca F (2013) Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chromosome phylogeny. Science 341:565–569

  • Francalacci P, Sanna D, Useli A (2016) Human Y-chromosome mutation rate: problems and perspectives. In: Lima M, Ramos A, Santos C (eds) Genomics in biological anthropology: new challenges, new opportunities, Chapter 4. pp. 64–90. (Bentham eBooks. 2016)

  • Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Aleksei A, Johnson PLF, Petri AA, De Filippo C, Meyer M, Zwyns N, Salazar-garcia DC, Yaroslav V, Keates SG, Kosintsev PA, Razhev DI, Michael P, Peristov NV, Lachmann M, Douka K, Thomas FG, Slatkin M, Hublin J, Reich D, Kelso J, Viola B (2014) The genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge J, Budowle B, Aranda XG, Planz JV, Eisenberg AJ, Chakraborty R (2009) Forensic Science International : genetics Mutation rates at Y chromosome short tandem repeats in Texas populations. Forensic Sci Int Genet 3:179–184

    Article  CAS  PubMed  Google Scholar 

  • Goedbloed M, Vermeulen M, Fang RN, Lembring M (2009) Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpF l STR Yfiler PCR amplification kit. Int J Legal Med 123:471–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995a) An evaluation of genetic distances for use with microsatellite loci. Genetics 139(1):463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995b) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92(15):6723–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallast P, Batini C, Zadik D, Delser PM, Wetton JH, Arroyo-pardo E, Cavalleri GL, De Knijff P, Bisol GD, Dupuy BM, Eriksen HA, Jorde LB, King TE, Larmuseau MH, Munain D, Ana ML, Tolun A, Tyler-smith C, Van Geystelen A, Watkins S, Winney B, Jobling MA (2014) The Y-chromosome tree bursts into leaf: 13, 000 high-confidence SNPs covering the majority of known clades. Mol Biol Evol 32:661–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Helgason A, Einarsson AW, Guðmundsdóttir VB, Sigurðsson Á, Gunnarsdóttir ED, Jagadeesan A, Ebenesersdóttir SS, Kong A, Stefánsson K (2015) The Y-chromosome point mutation rate in humans. Nat Genet 47(5):453–457. doi:10.1038/ng.3171

    Article  CAS  PubMed  Google Scholar 

  • Ho SYW, Larson G (2006) Molecular clocks : when times are a-changin. Trends Genet 22:79–83

    Article  CAS  PubMed  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T, Graves TA, Saskia KM, Daalen V, Minx PJ, Fulton RS, Mcgrath SD, Locke DP, Friedman C, Trask BJ, Mardis ER, Warren WC, Rozen S, Wilson RK, Page DC (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536–539

    Article  Google Scholar 

  • Ilumae A, Reidla M, Chukhryaeva M, Jarve M, Post H, Karmin M, Saag L, Agdzhoyan A, Kushniarevich A, Litvinov S, Ekomasova N, Tambets K, Metspalu E, Khusainova R, Yunusbayev B, Khusnutdinova EK, Osipova LP, Fedorova S, Utevska O, Koshel S, Balanovska E, Behar DM, Balanovsky O, Kivisild T, Underhill PA, Villems R, Rootsi S (2016) Human Y chromosome haplogroup N : a non-trivial time-resolved phylogeography that cuts across language families. Am J Hum Genet 99:163–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmin M, Saag L, Vicente M, Wilson Sayres MA, Järve M, Talas UG, Rootsi S, Ilumäe AM, Mägi R, Mitt M, Pagani L, Puurand T, Faltyskova Z, Clemente F, Cardona A, Metspalu E, Sahakyan H, Yunusbayev B, Hudjashov G, DeGiorgio M, Loogväli EL, Eichstaedt C, Eelmets M, Chaubey G, Tambets K, Litvinov S, Mormina M, Xue Y, Ayub Q, Zoraqi G, Korneliussen TS, Akhatova F, Lachance J, Tishkoff S, Momynaliev K, Ricaut FX, Kusuma P, Razafindrazaka H, Pierron D, Cox MP, Sultana GNN, Willerslev R, Muller C, Westaway M, Lambert D, Skaro V, Kovačević L, Turdikulova S, Dalimova D, Khusainova R, Trofimova N, Akhmetova V, Khidiyatova I, Lichman DV, Isakova J, Pocheshkhova E, Sabitov Z, Barashkov NA, Nymadawa P, Mihailov E, Seng JWT, Evseeva I, Migliano AB, Abdullah S, Andriadze G, Primorac D, Atramentova L, Utevska O, Yepiskoposyan L, Marjanović D, Kushniarevich A, Behar DM, Gilissen C, Vissers L, Veltman JA, Balanovska E, Derenko M, Malyarchuk B, Metspalu A, Fedorova S, Eriksson A, Manica A, Mendez FL, Karafet TM, Veeramah KR, Bradman N, Hammer MF, Osipova LP, Balanovsky O, Khusnutdinova EK, Johnsen K, Remm M, Thomas MG, Tyler-Smith C, Underhill PA, Willerslev E, Nielsen R, Metspalu M et al (2015) A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res 25:459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Filipski A, Swarna V, Walker A, Hedges SB (2005) Placing confidence limits on the molecular age of the human—chimpanzee divergence. Proc Natl Acad Sci USA 102:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroki Y, Toyoda A, Noguchi H, Taylor TD, Itoh T, Kim D, Kim D, Choi S, Kim I, Choi HH, Kim YS, Satta Y, Saitou N, Yamada T, Morishita S, Hattori M, Sakaki Y, Park H, Fujiyama A (2006) Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nat Genet 38:1–11

    Article  Google Scholar 

  • Rasmussen M, Anzick SL, Waters MR, Skoglund P, Jr TWS, Rasmussen S, Moltke I, Doyle SM, Poznik GD, Gudmundsdottir V, Malaspinas A, V SSW, Allentoft ME, Cornejo E, Tambets K, Eriksson A, Heintzman PD, Saag L, Warmuth V, Lopes MC, Malhi RS (2014) HHS Public Access site in western Montana. Nature 506:225–229

  • Mendez FL, Krahn T, Schrack B, Krahn AM, Veeramah KR, Woerner AE, Fomine FLM, Bradman N, Thomas MG, Karafet TM, Hammer MF (2013) An African American paternal lineage adds an extremely ancient root to the human y chromosome phylogenetic tree. Am J Hum Genet [Internet] 92:454–459. doi:10.1016/j.ajhg.2013.02.002

  • Moorjani P, Gao Z, Przeworski M (2016) Human germline mutation and the erratic evolutionary clock. PLoS Biol 14(10):e2000744. doi:10.1371/journal.pbio.2000744

    Article  PubMed  PubMed Central  Google Scholar 

  • Poznik GD, Henn BM, Yee M, Sliwerska E, Ghia M, Lin AA, Snyder M, Quintana-murci L, Kidd JM, Underhill PA, Bustamante CD (2013) NIH Public Access. Science 341:562–565

  • Poznik GD, Xue Y, Mendez FL, Willems TF, Sayres MAW, Ayub Q, Mccarthy SA, Kashin S, Chen Y, Banerjee R, Rodriguez-flores JL, Cerezo M, Shao H, Gymrek M, Malhotra A, Louzada S, Desalle R, Ritchie GRS, Cerveira E, Fitzgerald TW, Marcketta A, Mittelman D, Romanovitch M, Zhang C, Zheng-bradley X, Abecasis GR, Steven A, Flicek P, Underhill PA, Coin L, Zerbino DR, Yang F, Lee C, Clarke L, Auton A, Erlich Y, Handsaker RE, Carlos D, Tyler-smith C, Campus WG, Program SB (2016) HHS public access. Nat Genet 48:593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purps J, Siegert S, Willuweit S, Nagy M, Alves C, Salazar R, Angustia SM, Santos LH, Anslinger K, Bayer B, Ayub Q, Wei W, Xue Y, Tyler-Smith C, Bafalluy MB, Martínez-Jarreta B, Egyed B, Balitzki B, Tschumi S, Ballard D, Court DS, Barrantes X, Bäßler G, Wiest T, Berger B, Niederstätter H, Parson W, Davis C, Budowle B, Burri H, Borer U, Koller C, Carvalho EF, Domingues PM, Chamoun WT, Coble MD, Hill CR, Corach D, Caputo M, D'Amato ME, Davison S, Decorte R, Larmuseau MH, Ottoni C, Rickards O, Lu D, Jiang C, Dobosz T, Jonkisz A, Frank WE, Furac I, Gehrig C, Castella V, Grskovic B, Haas C, Wobst J, Hadzic G, Drobnic K, Honda K, Hou Y, Zhou D, Li Y, Hu S, Chen S, Immel UD, Lessig R, Jakovski Z, Ilievska T, Klann AE, García CC, de Knijff P, Kraaijenbrink T, Kondili A, Miniati P, Vouropoulou M, Kovacevic L, Marjanovic D, Lindner I, Mansour I, Al-Azem M, Andari AE, Marino M, Furfuro S, Locarno L, Martín P, Luque GM, Alonso A, Miranda LS, Moreira H, Mizuno N, Iwashima Y, Neto RS, Nogueira TL, Silva R, Nastainczyk-Wulf M, Edelmann J, Kohl M, Nie S, Wang X, Cheng B, Núñez C, Pancorbo MM, Olofsson JK, Morling N, Onofri V, Tagliabracci A, Pamjav H, Volgyi A, Barany G, Pawlowski R, Maciejewska A, Pelotti S, Pepinski W, Abreu-Glowacka M, Phillips C, Cárdenas J, Rey-Gonzalez D, Salas A, Brisighelli F, Capelli C, Toscanini U, Piccinini A, Piglionica M, Baldassarra SL, Ploski R, Konarzewska M, Jastrzebska E, Robino C, Sajantila A, Palo JU, Guevara E, Salvador J, Ungria MC, Rodriguez JJ, Schmidt U, Schlauderer N, Saukko P, Schneider PM, Sirker M, Shin KJ, Oh YN, Skitsa I, Ampati A, Smith TG, Calvit LS, Stenzl V, Capal T, Tillmar A, Nilsson H, Turrina S, De Leo D, Verzeletti A, Cortellini V, Wetton JH, Gwynne GM, Jobling MA, Whittle MR, Sumita DR, Wolańska-Nowak P, Yong RY, Krawczak M, Nothnagel M, Roewer L (2014) A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Sci Int Genet 12:12–23. doi:10.1016/j.fsigen.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MTP, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Grønnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TFG, Ramsey CB, Hansen TO, Villems R, Nielsen FC, Crawford MH, Brunak S, Sicheritz-ponte T, Nielsen R, Krogh A, Wang J, Willerslev E (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saillard J, Forster P, Lynnerup N, Nørby S (2000) mtDNA Variation among Greenland Eskimos : the Edge of the Beringian Expansion. Am J Hum Genet 67:718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scozzari R, Massaia A, Trombetta B, Bellusci G, Myres NM, Novelletto A, Cruciani F (2014) An unbiased resource of novel SNP markers provides a new chronology for the human Y chromosome and reveals a deep phylogenetic structure in Africa. Genome Res 24(3):535–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Zhivotovsky LA, King R, Mehdi SQ, Edmonds CA, Chow CE, Lin AA, Mitra M, Sil SK, Ramesh A, Usha Rani MV, Thakur CM, Cavalli-Sforza LL, Majumder PP, Underhill PA (2006) Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists. Am J Hum Genet 78(2):202–221

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Ayub Q, Vermeulen M, Shao RG, Zuniga S, Van Der Gaag K, De Knijff P, Kayser M, Xue Y, Tyler-Smith C (2010) A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Mol Biol Evol 27:385–393

    Article  CAS  PubMed  Google Scholar 

  • Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44(10):1161–1165. doi:10.1038/ng.2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetushkin E (2011) Genetic aspects of genealogy. Genetika 47(11):1451–1472

    PubMed  Google Scholar 

  • Thomson R, Pritchard JK, Shen P, Oefner PJ, Feldman MW (2000) Recent common ancestry of human Y chromosomes : evidence from DNA sequence data. Proc Natl Acad Sci USA 97:7360–7365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trombetta B, Atanasio ED, Massaia A, Myres NM, Scozzari R, Cruciani F, Novelletto A (2015) Regional differences in the accumulation of SNPs on the male-specific portion of the human Y chromosome replicate autosomal patterns : implications for genetic dating. PLoS One 10:1–18

    Google Scholar 

  • Turrina S, Caratti S, Ferrian M (2015) Haplotype data and mutation rates for the 23 Y-STR loci of PowerPlex® Y 23 System in a Northeast Italian population sample. Int J Legal Med 129:725–728

    Article  PubMed  Google Scholar 

  • Underhill PA, Poznik GD, Rootsi S, Järve M, Lin AA, Wang J, Passarelli B, Kanbar J, Myres NM, King RJ, Cristofaro JD, Sahakyan H, Behar DM, Kushniarevich A, Šarac J, Šaric T, Rudan P, Pathak AK, Chaubey G, Grugni V, Semino O, Yepiskoposyan L, Bahmanimehr A, Farjadian S, Balanovsky O, Khusnutdinova EK, Herrera RJ, Chiaroni J, Bustamante CD, Quake SR, Kivisild T, Villems R (2014) The phylogenetic and geographic structure of Y-chromosome haplogroup R1a. Eur J Hum Genet 23(1):124–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeulen M, Wollstein A, Van Der Gaag K, Lao O, Xue Y, Wang Q, Roewer L, Knoblauch H, Tyler-smith C, De Knijff P (2009) Europe PMC Funders Group Improving global and regional resolution of male lineage differentiation by simple single-copy Y-chromosomal short tandem repeat polymorphisms. Forensic Sci Int Genet 3:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Li H (2015) Evaluating the Y chromosomal STR dating in deep-rooting pedigrees. Investig Genet. 28(6):8. doi:10.1186/s13323-015-0025-z

    Article  CAS  Google Scholar 

  • Wang C-C, Gilbert MTP, Jin L, Li H (2014) Evaluating the Y chromosomal timescale in human demographic and lineage dating. Investig Genet 5(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang Y, Zhang C, Li R, Yang Y, Ou X, Tong D, Sun H (2016) Forensic science international : Genetics genetic polymorphisms and mutation rates of 27 Y-chromosomal STRs in a Han population from Guangdong Province, Southern China. Forensic Sci Int Genet [Internet] 21:5–9. doi:10.1016/j.fsigen.2015.09.013

  • Wei W, Ayub Q, Chen Y, McCarthy S, Hou Y, Carbone I, Xue Y, Tyler-Smith C (2013a) A calibrated human Y-chromosomal phylogeny based on resequencing. Genome Res [Internet] 23:388–395. doi:10.1101/gr.143198.112

  • Wei W, Ayub Q, Xue Y, Tyler-Smith C (2013b) A comparison of Y-chromosomal lineage dating using either resequencing or Y-SNP plus Y-STR genotyping. Forensic Sci Int Genet [Internet] 7:568–572. doi:10.1016/j.fsigen.2013.03.014

  • Willems T, Gymrek M, Poznik GD, Tyler-smith C (2016) Population-scale sequencing data enable precise estimates of Y-STR mutation rates. Am J Hum Genet [Internet] 98:919–933. doi:10.1016/j.ajhg.2016.04.001

  • Willuweit S, Roewer L (2015) The new Y chromosome haplotype reference database. Forensic Sci Int Genet. 15:43–48. doi:10.1016/j.fsigen.2014.11.024 (PubMed PMID: 25529991)

    Article  CAS  PubMed  Google Scholar 

  • Wilson IJ, Weale ME, Balding DJ (2003) Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities. J R Statist Soc 166:155–201

    Article  Google Scholar 

  • Xue Y, Wang Q, Long Q, Ng BL, Swerdlow H, Burton J, Skuce C, Taylor R, Abdellah Z, Zhao Y, Macarthur DG, Quail MA, Carter NP, Yang H (2009) Report human Y chromosome base-substitution mutation rate measured by direct sequencing in a Deep-rooting pedigree. Curr Biol 19:1453–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhivotovsky LA, Underhill PA, Cinniog C, Kayser M, Morar B, Kivisild T, Scozzari R, Cruciani F, Destro-bisol G, Spedini G, Chambers GK, Herrera RJ, Yong KK, Gresham D, Tournev I, Feldman MW, Kalaydjieva L (2004) The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time. Am J Hum Genet 37:50–61

    Article  Google Scholar 

  • Zhivotovsky LA, Underhill PA et al (2005) On the evolutionary mutation rate at Y-chromosome STRs: comments on paper by Di Giacomo (2004). Hum Genet. 116(6):529–532

    Article  PubMed  Google Scholar 

  • Zhivotovsky LA, Underhill PA, Feldman MW (2006) Difference between evolutionarily effective and germ line mutation rate due to stochastically varying haplogroup size. Mol Biol Evol 23(12):2268–2270. doi:10.1093/molbev/msl105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank P. Francalacci, E. Balanovska, V. Zaporozhchenko and anonymous reviewers for helpful discussions, A. Rubanovich for consultations on statistical questions, T. Kivisild and M. Karmin for sharing their raw data on STR-based haplogroup ages, and A. Agdzhoyan and G. Stepanov for assistance in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Balanovsky.

Ethics declarations

Funding

This study received support from the Russian Science Foundation Grant 17-14-01345.

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balanovsky, O. Toward a consensus on SNP and STR mutation rates on the human Y-chromosome. Hum Genet 136, 575–590 (2017). https://doi.org/10.1007/s00439-017-1805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-017-1805-8

Keywords

Navigation