Skip to main content
Log in

A dominant-negative mutation of HSF2 associated with idiopathic azoospermia

Human Genetics Aims and scope Submit manuscript

Abstract

Idiopathic azoospermia (IA) is a severe form of male infertility due to unknown causes. The HSF2 gene, encoding the heat shock transcription factor 2, had been suggested to play a significant role in the spermatogenesis process since the Hsf2-knockout male mice showed spermatogenesis defects. To examine whether HSF2 is involved in the pathogenesis of IA in human, we sequenced all the exons of HSF2 in 766 patients diagnosed with IA and 521 proven fertile men. A number of coding mutations private to the patient group, which include three synonymous mutations and five missense mutations, were identified. Of the missense mutations, our functional assay demonstrated that one heterozygous mutation, R502H, caused a complete loss of HSF2 function and that the mutant suppressed the normal function of the wild-type (WT) allele through a dominant-negative effect, thus leading to the dominant penetrance of the mutant allele. These results support a role for HSF2 in the pathogenesis of IA and further implicate this transcription factor as a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    Article  PubMed  CAS  Google Scholar 

  • Akerfelt M, Henriksson E, Laiho A, Vihervaara A, Rautoma K, Kotaja N, Sistonen L (2008) Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci USA 105:11224–11229. doi:10.1073/pnas.0800620105

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 93:3264–3268

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, Brown PR, Goulding EH, Strong BD, Eddy EM (1997) HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124:4595–4603

    PubMed  CAS  Google Scholar 

  • Eddy EM (1999) Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod 4:23–30

    Article  PubMed  CAS  Google Scholar 

  • Goodson ML, Park-Sarge OK, Sarge KD (1995) Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol 15:5288–5293

    PubMed  CAS  Google Scholar 

  • Govin J, Caron C, Escoffier E, Ferro M, Kuhn L, Rousseaux S, Eddy EM, Garin J, Khochbin S (2006) Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. J Biol Chem 281:37888–37892. doi:10.1074/jbc.M608147200

    Article  PubMed  CAS  Google Scholar 

  • He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278:35465–35475

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Xia Y, Guo X, Dai J, Li H, Hu H, Jiang Y, Lu F, Wu Y, Yang X, Yao B, Lu C, Xiong C, Li Z, Gui Y, Liu J, Zhou Z, Shen H, Wang X, Sha J (2012) A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet 44:183–186. doi:10.1038/ng.1040

    Article  CAS  Google Scholar 

  • Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601. doi:10.1093/emboj/21.11.2591

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Lamb DJ (2008) The biology of infertility: research advances and clinical challenges. Nat Med 14:1197–1213. doi:10.1038/nm.f.1895

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22:8005–8014

    Article  PubMed  CAS  Google Scholar 

  • Mou L, Xu JY, Li W, Lei X, Wu Y, Xu G, Kong X, Xu GT (2010) Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Invest Ophthalmol Vis Sci 51:396–404. doi:10.1167/iovs.09-3772

    Article  PubMed  Google Scholar 

  • Ostling P, Bjork JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086. doi:10.1074/jbc.M607556200

    Article  PubMed  Google Scholar 

  • Sarge KD, Cullen KE (1997) Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci 53:191–197

    Article  PubMed  CAS  Google Scholar 

  • Sarge KD, Park-Sarge OK, Kirby JD, Mayo KE, Morimoto RI (1994) Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol Reprod 50:1334–1343

    Article  PubMed  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12:4104–4111

    PubMed  CAS  Google Scholar 

  • Son WY, Hwang SH, Han CT, Lee JH, Kim S, Kim YC (1999) Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod 5:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61. doi:10.1002/gene.10200

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66–80. doi:10.1002/gene.20005

    Article  PubMed  Google Scholar 

  • Wilkerson DC, Skaggs HS, Sarge KD (2007) HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression. Cell Stress Chaperones 12:283–290

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115. doi:10.1093/nar/gnh110

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Scientific Program of China (No. 2011CB944303), the Promotion Program for Shenzhen Key Laboratory (CXB201005250017A), Shenzhen Foundation of Science and Technology (200901015, JC200903180681A) and the Biobank of Complex Diseases in Shenzhen (CXC201005260001A). The authors thank the patients and the family members for their cooperation during the study. The authors also thank Jing-Ying Xu at Tongji University School of Medicine for the expression plasmid of HSF2a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Cai or Yaoting Gui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mou, L., Wang, Y., Li, H. et al. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet 132, 159–165 (2013). https://doi.org/10.1007/s00439-012-1234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1234-7

Keywords

Navigation