Skip to main content
Log in

Elucidation of sequence polymorphism in fuzzless-seed cotton lines

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Most commercially produced cotton cultivars have two types of fibers on the seed coat, short fuzz and long lint. Lint fiber is used in the textile industry, while fuzz is considered an undesirable trait. Both types of fibers are believed to be controlled by the same regulators; however, their mechanisms of actions are still obscure. Cotton fiber mutants provide an excellent system to study the genes that regulate fiber development. Here we described four uncharacterized and three previously reported cotton mutants with fuzzless seed phenotypes. To evaluate whether or not the genes previously associated with fuzzless seed phenotypes have mutations we sequenced whole genomic DNA of seven mutants and wild type varieties. We identified multiple polymorphic changes among the tested genes. Non-synonymous SNPs in the coding region of the MML3-A gene was common in the six mutant lines tested in this study, showing both dominant and recessive fuzzless phenotypes. We have mapped the locus of the causative mutation for one of the uncharacterized fuzzless lines using an F2 population that originated from a cross between the dominant fuzzless mutant and a wild type. Further, we have clarified the current knowledge about the causative n2 mutations by analyzing the sequence data and previously reported mapping data. The key genes and possible mechanisms of fiber differentiation are discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  CAS  PubMed  Google Scholar 

  • Bechere E, Auld DL (2014) Registration of a tufted-naked seed Upland cotton germplasm, 9023n4t. J Plant Regist 8:63–67

    Article  Google Scholar 

  • Bechere E, Boykin JC, Meredith W (2011) Evaluation of cotton genotypes for ginning energy and ginning rate. J Cotton Sci 15:11–21

    Google Scholar 

  • Bechere E, Turley RB, Auld DL, Zeng L (2012) A new fuzzless seed locus in an upland cotton (Gossypium hirsutum L.) mutant. Am J Plant Sci 3:799

    Article  Google Scholar 

  • Bedon F, Ziolkowski L, Walford SA, Dennis ES, Llewellyn DJ (2014) Members of the MYBMIXTA-like transcription factors may orchestrate the initiation of fiber development in cotton seeds. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00179

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedict CR, Kohel RJ, Lewis HL (1999) Cotton fiber quality. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production, vol 4. Wiley, Hoboken, pp 269–288

    Google Scholar 

  • Ding M, Ye W, Lin L, He S, Du X, Chen A, Cao Y, Qin Y, Yang F, Jiang Y (2015) The hairless stem phenotype of cotton (Gossypium barbadense) is linked to a copia-like retrotransposon insertion in a homeodomain-leucine zipper gene (HD1). Genetics 201:143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding M, Cao Y, He S, Sun J, Dai H, Zhang H, Sun C, Jiang Y, Paterson AH, Rong J (2020) GaHD1, a candidate gene for the Gossypium arboreum SMA-4 mutant, promotes trichome and fiber initiation by cellular H2O2 and Ca2+ signals. Plant Mol Biol 103:409–423. https://doi.org/10.1007/s11103-020-01000-3

    Article  CAS  PubMed  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endrizzi JE, Ramsay G (1980) Identification of ten chromosome deficiencies of cotton. Cytological identification of eight chromosomes and genetic analysis of chromosome deficiencies and marker genes. J Hered 71:45–48. https://doi.org/10.1093/oxfordjournals.jhered.a109309

    Article  Google Scholar 

  • Endrizzi J, Turcotte E, Kohel R (1984) Qualitative genetics, cytology, and cytogenetics. Cotton 24:81–129

    Google Scholar 

  • Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120:943–953. https://doi.org/10.1007/s00122-009-1223-y

    Article  CAS  PubMed  Google Scholar 

  • Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics 15:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng X, Cheng H, Zuo D, Zhang Y, Wang Q, Liu K, Ashraf J, Yang Q, Li S, Chen X (2019) Fine mapping and identification of the fuzzless gene GaFzl in DPL972 (Gossypium arboreum). Theor Appl Genet 132:2169–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY (2008) The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plant 134:174–182

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Lee JJ, Pang M, Shi X, Stelly DM, Chen ZJ (2011) Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0021301

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Liu X, Tang K, Zuo K (2013) Functional analysis of the seed coat-specific gene GbMYB2 from cotton. Plant Physiol Biochem 73:16–22

    Article  CAS  PubMed  Google Scholar 

  • Humphries JA, Walker AR, Timmis JN, Orford SJ (2005) Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thalianaTRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Biol 57:67–81

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 17:903. https://doi.org/10.1186/s12864-016-3249-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins J, McCarty J, Gutierrez O, Hayes R, Bowman D, Watson C, Jones D (2008) Registration of RMUP-C5, a random mated population of upland cotton germplasm. J Plant Regist 2:239–242

    Article  Google Scholar 

  • Kearney TH, Harrison GJ (1927) Inheritance of smooth seeds in cotton. J Agric Res 35:193–217

    Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM arXiv preprint arXiv:13033997

  • Li C-H, Zhu Y-Q, Meng Y-L, Wang J-W, Xu K-X, Zhang T-Z, Chen X-Y (2002) Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Sci 163:1113–1120

    Article  CAS  Google Scholar 

  • Liu X, Moncuquet P, Zhu Q-H, Stiller W, Zhang Z, Wilson I (2020) Genetic identification and transcriptome analysis of lintless and fuzzless traits in Gossypium arboreum L. Int J Mol Sci 21:1675

    Article  CAS  PubMed Central  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, Wu J, Wang M, Liu H, Feng K, Ke H, Wang J, Lan H, Wang G, Peng J, Wang N, Wang L, Pang B, Peng Z, Li R, Tian S, Du X (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813. https://doi.org/10.1038/s41588-018-0119-7

    Article  CAS  PubMed  Google Scholar 

  • Machado A, Wu Y, Yang Y, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 59:52–62. https://doi.org/10.1111/j.1365-313X.2009.03847.x

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucl Acids Res 29:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu L, Li Q, Fan X, Yang W, Xue Y (2008) The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samora P, Stelly D, Kohel R (1994) Localization and mapping of the Le1, and Gl2 loci of cotton (Gossypium hirsutum L.). University Press, Oxford

    Book  Google Scholar 

  • Shan C-M, Shangguan X-X, Zhao B, Zhang X-F, Chao L-m, Yang C-Q, Wang L-J, Zhu H-Y, Zeng Y-D, Guo W-Z (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519

    Article  CAS  PubMed  Google Scholar 

  • Shangguan X-X, Xu B, Yu Z-X, Wang L-J, Chen X-Y (2008) Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot 59:3533–3542. https://doi.org/10.1093/jxb/ern204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shangguan XX, Yang CQ, Zhang XF, Wang LJ (2016) Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant 158:200–212

    Article  CAS  PubMed  Google Scholar 

  • Song L, Guo WZ, Qin HD, Ding YZ, Zhang TZ (2010) Genetic analysis and molecular validation of chromosome assignment for fuzzless genes N1 and n2 in cotton. JNAU 33:21–26

    CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Steward JM (1975) Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot 62:723–730

    Article  Google Scholar 

  • Taliercio EW, Boykin D (2007) Analysis of gene expression in cotton fiber initials. BMC Plant Biol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M (2014) Next generation genetic mapping of the Ligon-lintless-2 (Li 2) locus in upland cotton (Gossypium hirsutum L.). Theoret Appl Genet 127:2183–2192

    Article  CAS  Google Scholar 

  • Thyssen G, Jenkins J, McCarty J, Zeng L, Campbell T, Delhom C, Islam M, Li P, Jones DC, Condon B, Fang DD (2019) Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 132:989–999. https://doi.org/10.1007/s00122-018-3254-8

    Article  CAS  PubMed  Google Scholar 

  • Turley R, Kloth R (2002) Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.). J Hered 93:359–364

    Article  CAS  PubMed  Google Scholar 

  • Walford SA, Wu Y, Llewellyn DJ, Dennis ES (2011) GhMYB25-like: a key factor in early cotton fibre development. Plant J. https://doi.org/10.1111/j.1365-313X.2010.04464.x

    Article  PubMed  Google Scholar 

  • Walford SA, Wu Y, Llewellyn DJ, Dennis ES (2012) Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J 71:464–478

    CAS  PubMed  Google Scholar 

  • Wan Q, Guan X, Yang N, Wu H, Pan M, Liu B, Fang L, Yang S, Hu Y, Ye W (2016) Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol 210:1298–1310

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang J-W, Yu N, Li C-H, Luo B, Gou J-Y, Wang L-J, Chen X-Y (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen L-L, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229. https://doi.org/10.1038/s41588-018-0282-x

    Article  CAS  PubMed  Google Scholar 

  • Ware JO, Benedict LI, Rolfe WH (1947) A recessive naked-seed character in upland cotton. J Hered 38:313–320

    CAS  PubMed  Google Scholar 

  • Wu H, Tian Y, Wan Q, Fang L, Guan X, Chen J, Hu Y, Ye W, Zhang H, Guo W, Chen X, Zhang T (2017) Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol 217:883–895. https://doi.org/10.1111/nph.14844

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F (2019) Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 10:2989. https://doi.org/10.1038/s41467-019-10820-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Q, Xu W, Zhang K, Zhang L, Yi X, Yao D, Wang C, Zhang X, Zhao X, Provart NJ, Li F, Su Z (2017) ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium. Nucleic Acids Res 45:D1090–D1099. https://doi.org/10.1093/nar/gkw910

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Jung S, Cheng C-H, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D (2013) CottonGen: a genomics, genetics and breeding database for cotton research. Nucl Acids Res 42:D1229–D1236. https://doi.org/10.1093/nar/gkt1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang T, Sang Z, Guo W (2007) Comparative development of lint and fuzz using different cotton fiber-specific developmental mutants in Gossypium hirsutum. J Integr Plant Biol 49:1038–1046. https://doi.org/10.1111/j.1672-9072.2007.00454.x

    Article  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537. https://doi.org/10.1038/nbt.3207

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q-H, Yuan Y, Stiller W, Jia Y, Wang P, Pan Z, Du X, Llewellyn D, Wilson I (2018) Genetic dissection of the fuzzless seed trait in Gossypium barbadense. J Exp Bot 69:997–1009. https://doi.org/10.1093/jxb/erx459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Bechere for providing n4t mutant line. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture, which is an equal opportunity provider and employer.

Funding

This research was funded by the United States Department of Agriculture-Agricultural Research Service CRIS project 6054-21000-018-00D.

Author information

Authors and Affiliations

Authors

Contributions

MN conceived the research, designed experiments and drafted the manuscript. DDF provided NCVT data and oversee mapping experiment. GNT performed bioinformatics analysis. LP and CBF conducted the experiments. All authors read and approved the manuscript.

Corresponding author

Correspondence to Marina Naoumkina.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 Figure S1. Flowers. a, SC9023; b, SA-143 (n2); c, SA-9 and d, SA-13 (JPG 298 kb)

438_2020_1736_MOESM2_ESM.jpg

Supplementary file2 Figure S2. Expression level of homeologous RDL1 genes. The expression data was obtained from ccNET database (You et al. 2017) (JPG 82 kb)

Supplementary file3 Figure S3. Lint phenotype of segregating F2 plants (SC9023 x SA-68) (JPG 352 kb)

438_2020_1736_MOESM4_ESM.tif

Supplementary file4 Figure S4. Expression level of genes from SA68fzl locus. The expression data was obtained from ccNET database (You et al. 2017) (TIF 2557 kb)

438_2020_1736_MOESM5_ESM.docx

Supplementary file5 Figure S5. Alignment of nucleotide sequences of the promoter region, 969 bp before ATG start (a), or 3’UTR region, 1480 bp after stop codon (b), of Ghir_A12G017450 (MML3-A) gene of fuzzy TM1, Sc9024 and fuzzless SA9, SA13, SA51, SA68, SA143, SA243, n4 lines (DOCX 16 kb)

438_2020_1736_MOESM6_ESM.docx

Supplementary file6 Figure S6. (a) Alignment of nucleotide sequences of Ghir_A12G017460, Ghir_D12G017670, Gbar_D12G017700, Gorai.008G179800, MF974183 G. hirsutum isolate n2_NSM_Dt, and Ghir_D12G017680. Asterisks (*) highlighted by yellow indicate the stop codon in Ghir_D12G017670. Signs ‘>’ or ‘<’ on top of sequence indicate positions and directions of primers. (b) Alignment of amino acid sequences of listed above genes (DOCX 15 kb)

438_2020_1736_MOESM7_ESM.xlsx

Supplementary file7 Table S1. Analysis of SNPs found in MML3-A, MML4-D, HD1-A and RDL1-A genes on diversity panel of 377 G. hirsutum cultivars, reference G. hirsutum TM-1, reference G. barbadense 3-79 and seven mutants (XLSX 28 kb)

Supplementary file8 Table S2. Description of phenotypic traits of seven naked mutant lines (XLSX 10 kb)

438_2020_1736_MOESM9_ESM.xlsx

Supplementary file9 Table S3. Evaluation of polymorphism in previously reported genes associated with naked seed phenotype in mutant and wild type lines. Names for eleven MAGIC parental lines are: 551—Acala Ultima; 552—Tamcot Pyramid; 553—Coker 315; 554—Stoneville 825; 555—Fibermax 966; 556—M240RNR; 557—Paymaster HS26; 558—Deltapine Acala 90; 559 Suregrow 747; 560—Phytogen PCS 355; 561—Stoneville 474. Line 3-79 is Gossypium barbadense species, data were obtained from CottonGen database (Yu et al. 2013). Polymorphism detected in mutant lines is indicated with red font; nd—not detected (XLSX 16 kb)

Supplementary file10 Table S4. Primers used in this study (XLSX 13 kb)

438_2020_1736_MOESM11_ESM.xlsx

Supplementary file11 Table S5. Evaluation of one or two genes phenotypic ratios by Goodness of Fit using Chi-Square tests of naked seed segregation of F2 population (XLSX 11 kb)

438_2020_1736_MOESM12_ESM.xlsx

Supplementary file12 Table S6. Table S6. Evaluation of polymorphism in SA68fzl locus in a sequence of mutant and wild type varieties. Names for eleven MAGIC parental lines are: 551—Acala Ultima; 552—Tamcot Pyramid; 553—Coker 315; 554—Stoneville 825; 555—Fibermax 966; 556—M240RNR; 557—Paymaster HS26; 558—Deltapine Acala 90; 559 Suregrow 747; 560—Phytogen PCS 355; 561—Stoneville 474. Sequence of each line compared to the sequence of TM-1 reference (Wang et al. 2019); (0/0) indicates the same nucleotide as in TM-1 in the homozygous state, whereas (1/1) is alternative nucleotide in the homozygous state; (0/1) is a heterozygous state, and (./.) indicates missing data (XLSX 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoumkina, M., Thyssen, G.N., Fang, D.D. et al. Elucidation of sequence polymorphism in fuzzless-seed cotton lines. Mol Genet Genomics 296, 193–206 (2021). https://doi.org/10.1007/s00438-020-01736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01736-z

Keywords

Navigation