Skip to main content
Log in

Widespread antisense transcription of Populus genome under drought

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense–antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Eco Manag 259:660–684

    Article  Google Scholar 

  • Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N, Yavin E, Dzikowski R (2015) Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci 112:E982–E991

    Article  PubMed  CAS  Google Scholar 

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Annilo T, Kepp K, Laan M (2009) Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol Biol 10:81–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asensi-Fabado M-A, Amtmann A, Perrella G (2017) Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim Biophys Acta Gene Regul Mech 1860:106–122

    Article  CAS  PubMed  Google Scholar 

  • Balbin OA, Malik R, Dhanasekaran SM, Prensner JR, Cao X, Wu Y-M, Robinson D, Wang R, Chen G, Beer DG et al (2015) The landscape of antisense gene expression in human cancers. Genome Res 25:1068–1079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beltran M, Puig I, Peña C, García JM, Álvarez AB, Peña R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev 22:756–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML. 2010. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol 12

  • Boque-Sastre R, Soler M, Oliveira-Mateos C, Portela A, Moutinho C, Sayols S, Villanueva A, Esteller M, Guil S (2015) Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci 112:5785–5790

    Article  PubMed  CAS  Google Scholar 

  • Brosché M, Vinocur B, Alatalo ER, Lamminmaki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrieri C, Forrest ARR, Santoro C, Persichetti F, Carninci P, Zucchelli S, Gustincich S (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen S, Wang S, Altman A, Hüttermann A (1997) Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol 17:797–803

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Song Y, Zhang H, Zhang D (2013) Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep 31:946–962

    Article  CAS  Google Scholar 

  • Chen J, Quan M, Zhang D (2015) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-sEq. Planta 241:125–143

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Wang C, Bao H, Chen H, Wang Y (2016) Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol Genet Genom 291:1663–1680

    Article  CAS  Google Scholar 

  • Chung PJ, Jung H, Jeong D-H, Ha S-H, Choi YD, Kim J-K (2016) Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genom 17:563

    Article  CAS  Google Scholar 

  • Cohen D, Bogeat-Triboulot M-B, Tisserant E, Balzergue S, Martin-Magniette M-L, Lelandais G, Ningre N, Renou J-P, Tamby J-P, Le Thiec D et al (2010) Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genom 11:630

    Article  CAS  Google Scholar 

  • Csorba T, Questa JI, Sun Q, Dean C (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci 111:16160–16165

    Article  PubMed  CAS  Google Scholar 

  • Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fedak H, Palusinska M, Krzyczmonik K, Brzezniak L, Yatusevich R, Pietras Z, Kaczanowski S, Swiezewski S (2016) Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci 113:E7846–E7855

    Article  PubMed  CAS  Google Scholar 

  • Gaidatzis D, Burger L, Florescu M, Stadler MB (2015) Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotech 33:722–729

    Article  CAS  Google Scholar 

  • García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679

    Article  PubMed  CAS  Google Scholar 

  • Gelfand B, Mead J, Bruning A, Apostolopoulos N, Tadigotla V, Nagaraj V, Sengupta AM, Vershon AK (2011) Regulated antisense transcription controls expression of cell-type-specific genes in yeast. Mol Cell Biol 31:1701–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo X-Y, Zhang X-S, Huang Z-Y (2010) Drought tolerance in three hybrid poplar clones submitted to different watering regimes. J Plant Ecol 3:79–87

    Article  Google Scholar 

  • Hamanishi ET, Raj S, Wilkins O, Thomas BR, Mansfield SD, Plant AL, Campbell MM (2010) Intraspecific variation in the Populus balsamifera drought transcriptome. Plant Cell Environ 33:1742

    Article  PubMed  CAS  Google Scholar 

  • He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense transcriptomes of human cells. Science 322:1855–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol 45:619–629

    Article  Google Scholar 

  • Hotta CT, Nishiyama MY Jr, Souza GM (2013) Circadian rhythms of sense and antisense transcription in sugarcane, a highly polyploid crop. PLoS One 8:e71847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lembke CG, Nishiyama MY, Sato PM, de Andrade RF, Souza GM (2012) Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Mol Biol 79:461–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Meth 7:709–715

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Liberman LM, Mukherjee N, Benfey PN, Ohler U (2013) Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data. Genome Res 23:1730–1739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu T, Zhu C, Lu G, Guo Y, Zhou Y, Zhang Z, Zhao Y, Li W, Lu Y, Tang W et al (2012) Strand-specific RNA-seq reveals widespread occurrence of novel cis- natural antisense transcripts in rice. BMC Genom 13:721

    Article  CAS  Google Scholar 

  • Matsui A, Nguyen AH, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14:22642–22654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills JD, Kawahara Y, Janitz M (2013) Strand-specific RNA-Seq provides greater resolution of transcriptome profiling. Curr Genom 14:173–181

    Article  CAS  Google Scholar 

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Le Thiec D, Brechet C, Brignolas F (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol 169:765

    Article  PubMed  Google Scholar 

  • Morrissy AS, Griffith M, Marra MA (2011) Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res 21:1203–1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R (2004) Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J 39:877–885

    Article  PubMed  CAS  Google Scholar 

  • Osato N, Suzuki Y, Ikeo K, Gojobori T (2007) Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 176:1299–1306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123–e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passalacqua KD, Varadarajan A, Weist C, Ondov BD, Byrd B, Read TD, Bergman NH (2012) Strand-specific RNA-seq reveals ordered patterns of sense and antisense transcription in Bacillus anthracis. PLoS One 7:e43350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pek JW, Osman I, Tay ML-I, Zheng RT (2015) Stable intronic sequence RNAs have possible regulatory roles in Drosophila melanogaster. J Cell Biol 211:243–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelechano V, Steinmetz LM (2013) Gene regulation by antisense transcription. Nat Rev Genet 14:880–893

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nat Clim Change 1:467–471

    Article  Google Scholar 

  • Perocchi F, Xu Z, Clauder-Münster S, Steinmetz LM (2007) Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 35:e128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phanstiel DH, Boyle AP, Araya CL, Snyder MP, Sushi R (2014) Flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics 30:2808–2810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porth I, El-Kassaby YA (2015) Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J 10:510–524

    Article  PubMed  CAS  Google Scholar 

  • Qin T, Zhao H, Cui P, Albesher N, Xiong L (2017) A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol. https://doi.org/10.1104/pp.17.00574

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regier N, Streb S, COCOZZA C, Schaub M, Cherubini P, Zeeman SC, Frey B (2009) Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ 32:1724–1736

    Article  PubMed  CAS  Google Scholar 

  • Reis EM, Nakaya HI, Louro R, Canavez FC, Flatschart AVF, Almeida GT, Egidio CM, Paquola AC, Machado AA, Festa F et al (2004) Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene 23:6684–6692

    Article  PubMed  CAS  Google Scholar 

  • Ryan MG (2011) Tree responses to drought. Tree Physiol 31:237–239

    Article  PubMed  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genom 14:233–233

    Article  CAS  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang Z, Ye C-Y, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shuai P, Su Y, Liang D, Zhang Z, Xia X, Yin W (2016) Identification of phasiRNAs and their drought- responsiveness in Populus trichocarpa. FEBS Lett 590:3616–3627

    Article  PubMed  CAS  Google Scholar 

  • Siegel TN, Hon C-C, Zhang Q, Lopez-Rubio J-J, Scheidig-Benatar C, Martins RM, Sismeiro O, Coppée J-Y, Scherf A (2014) Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum. BMC Genom 15:150

    Article  Google Scholar 

  • Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Street NR, Skogström O, Sjödin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–341

    Article  PubMed  CAS  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  PubMed  CAS  Google Scholar 

  • Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, Xie J, Li B, Zhang D (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot 67:2467–2482

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596

    Article  PubMed  CAS  Google Scholar 

  • Viger M, Smith HK, Cohen D, Dewoody J, Trewin H, Steenackers M, Bastien C, Taylor G (2016) Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.). Tree Physiol. https://doi.org/10.1093/treephys/tpw017

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X-J, Gaasterland T, Chua N-H (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Chung PJ, Liu J, Jang I-C, Kean M, Xu J, Chua N-H (2014a) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res. https://doi.org/10.1101/gr.165555.113

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chung PJ, Liu J, Jang I-C, Kean MJ, Xu J, Chua N-H (2014b) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017) Non-coding RNAs and their roles in stress response in plants. Genom Proteom Bioinform 15:301–312

    Article  Google Scholar 

  • Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM (2009) Genotype and time of day shape the Populus drought response. Plant J 60:703–715

    Article  PubMed  CAS  Google Scholar 

  • Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F, Lan H, Cao M et al (2017a) Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res 45:5126–5141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X, Sun Q (2017b) The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants 3:704–714

    Article  PubMed  CAS  Google Scholar 

  • Yassour M, Pfiffner J, Levin JZ, Adiconis X, Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A (2010) Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol 11:87

    Article  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14–R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Chung JD, Fu X, Johnson VE, Ranjan P, Booth SL, Harding SA, Tsai CJ (2009) Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis. Proc Natl Acad Sci 106:22020

    Article  PubMed  Google Scholar 

  • Zhan S, Lukens L (2013) Protein-coding cis-natural antisense transcripts have high and broad expression in Arabidopsis. Plant Physiol 161:2171–2180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Information Technology unit at Michigan Technological University for IT support. We also appreciate prompt technical assistance from the developers and authors of software tools employed in our analysis, including Dr. Douglas H. Phanstiel (Sushi package), Dr. Liguo Wang and Dr. Shengqin Wang (RSeQC), and Dr. Devon Ryan (R script in expression analysis of intronic reads).

Funding

This study is financially supported in part by Michigan Technological University Research Excellence Fund Research Seed Grants and the National Institute of Food and Agriculture, US Department of Agriculture, under Award 2012-67014-19445 to Dr. Yuan.

Author information

Authors and Affiliations

Authors

Contributions

YY conceived the study, designed and performed the experiment. YY and SC analyzed the data. YY drafted the manuscript.

Corresponding author

Correspondence to Yinan Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants and/or animals.

Dataset access

All sequence reads from this study have been submitted to NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under accession no. SRP103219. The raw count data for sense and antisense gene expression of our analysis is available in the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) under accession number GSE97463. Reviewer can access to the data through https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=etyrokscbhslrop&acc=GSE97463.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Chen, S. Widespread antisense transcription of Populus genome under drought. Mol Genet Genomics 293, 1017–1033 (2018). https://doi.org/10.1007/s00438-018-1456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1456-z

Keywords

Navigation