Skip to main content
Log in

Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Adapted from Parmar et al. 2012b)

Fig. 5

(Adapted from Parmar and Wright 2013b)

Fig. 6
Fig. 7

(Adapted from Venkatachalam et al. 2013)

Fig. 8
Fig. 9

(Adapted from Laprairie et al. 2016a)

Similar content being viewed by others

Abbreviations

iLBP:

Intracellular lipid-binding protein

WGD:

Whole genome duplication

FABP:

Mammalian fatty acid-binding protein

FABP :

Mammalian fatty acid-binding protein gene

Fabp:

Fish fatty acid-binding protein

fabp :

Fish fatty acid-binding protein gene

RBP:

Retinol-binding protein

RBP :

Retinol-binding protein gene

CRABP:

Cellular retinoic acid-binding protein

CRABP :

Cellular retinoic acid-binding protein gene

PPAR:

Peroxisome proliferator-activated receptor

PPRE:

Peroxisome proliferator response element

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

FA:

Fatty acid

PP:

Peroxisome proliferator

DDC:

Duplication-degeneration-complementation

References

  • Agulleiro MJ, Andre M, Morais S, Cerda J, Babin PJ (2007) High transcript level of fatty acid-binding protein 11 but not of very low-density lipoprotein receptor is correlated to ovarian follicle atresia in a teleost fish (Solea senegalensis). Biol Reprod 77:504–516

    Article  CAS  PubMed  Google Scholar 

  • Ahsan B, Kobayashi D, Yamada T, Kasahara M, Sasaki S, Saito TL, Nagayasu Y, Doi K, Nakatani Y, Qu W et al (2008) UTGB/medaka: genomic resource database for medaka biology. Nucleic Acids Res 36:D747–D752

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. Plenum Press, New York

    Book  Google Scholar 

  • Alves-Costa FA, Denovan-Wright EM, Thisse C, Thisse B, Wright JM (2008) Spatio-temporal distribution of fatty acid-binding protein 6 (fabp6) gene transcripts in the developing and adult zebrafish (Danio rerio). FEBS J 275:3325–3334

    Article  CAS  PubMed  Google Scholar 

  • Amores A, Force A, Yan Y-L, Joly L, Amemiya C et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH (2011) Genome evolution and meiotic maps by massively parallel DNA sequencing: Spotted gar, an outgroup for the teleost genome duplication. Genetics 188:799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amsterdam A, Lin S, Moss LG, Hopkins N (1996) Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173:99–103

    Article  CAS  PubMed  Google Scholar 

  • Babin PJ (2009) Molecular evolution of vertebrate fatty acid-binding proteins. A Esteves (ed.). Fatty acid-binding proteins. Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India. Chapter 2, pp 17–29

  • Bayir M, Bayır A, Wright JM (2015) Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part D Genomics Proteomics 14:26–32

    Article  CAS  PubMed  Google Scholar 

  • Belliveau DJ, Venkatachalam AB, Thisse C, Thisse B, Ma H, Wright JM (2010) The duplicated retinol-binding protein 7 (rbp7) genes are differentially transcribed in embryos and adult zebrafish (Danio rerio). Gene Expr Patterns 10:167–176

    Article  CAS  PubMed  Google Scholar 

  • Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ (1997) Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 17:277–303

    Article  CAS  PubMed  Google Scholar 

  • Braasch I, Postlethwait JH (2012) Polyploidy in fish and the teleost genome duplication. In: Polyploidy and genome evolution, PS Soltis, DE Soltis (eds.), Springer-Verlag, Berlin Heidelberg

    Chapter  Google Scholar 

  • Bridges CB (1936) The bar “gene” a duplication. Science 83:210–211

    Article  CAS  PubMed  Google Scholar 

  • Budhu AS, Noy N (2002) Direct channeling of retinoic acid between cellular retinoic acid binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid induced growth arrest. Mol Cell Biol 22:2632–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron MC, Denovan-Wright EM, Sharma MK, Wright JM (2002) Cellular retinol-binding protein type II (CRBPII) in adult zebrafish (Danio rerio). Eur J Biochem 269:4685–4692

    Article  CAS  PubMed  Google Scholar 

  • Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    Article  CAS  PubMed  Google Scholar 

  • Clarke JT, Lloyd GT, Friedman M. (2016) Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc Nat Acad Sci USA 113:11531–11536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denovan-Wright EM, Pierce M, Wright JM (2000a) Nucleotide sequence of cDNA clones coding for a brain-type fatty acid-binding protein and its tissue-specific expression in adult zebrafish (Danio rerio). Biochim Biophys Acta 1492:221–226

    Article  CAS  PubMed  Google Scholar 

  • Denovan-Wright EM, Pierce M, Sharma MK, Wright JM (2000b) cDNA sequence and tissue-specific expression of a basic liver-type fatty acid-binding protein in adult zebrafish (Danio rerio). Biochim Biophys Acta 1492:227–232

    Article  CAS  PubMed  Google Scholar 

  • Detrich HWI, Westerfield M, Zon LI (1999) The zebrafish: genetics and genomics. Academic press, San Diego

    Google Scholar 

  • Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signalling by retinoic acid. J Biol Chem 274:23695–23698

    Article  CAS  PubMed  Google Scholar 

  • Donoghue PCJ, Benton MJ (2007) Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol 22:424–431

    Article  PubMed  Google Scholar 

  • Esteves A, Knoll-Gellida A, Canclini L, Silvarrey MC, André M, Babin PJ (2016) Fatty acid-binding proteins have the potential to channel dietary fatty acids into enterocytes. J Lipid Res 57:219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faircloth BC, Sorensen L, Santini F, Alfaro ME (2013) A phylogenetic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLoS One 8:e65923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn EJ, Trent CM, Rawls JF (2009) Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 50:1641–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait JH (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Gao Q, Zhang H, Wang L, Zhang F, Yang C, Song L (2014) Draft sequencing and analysis of the genome of pufferfish (Takifugu flavidus). DNA Res 21:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasauer SMK, Neuhauss SCF (2014) Whole-genome duplication in teleost fishes and its evolutnary consequences. Mol Genet Genomics 289:1045–1060

    Article  CAS  PubMed  Google Scholar 

  • Glatz JF, van der Vusse GJ (1996) Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 35:243–282

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Wagner A, He S (2011) Duplicated gene evolution following whole-genome duplication in teleost fish. In: Friedberg F (ed) Gene Duplication, Chapter 2. doi:10.5772/22039

    Google Scholar 

  • Haunerland NH, Spener F (2004) Fatty acid-binding proteins–insights from genetic manipulations. Prog Lipid Res 43:328–349

    Article  CAS  PubMed  Google Scholar 

  • Her GM, Chiang CC, Chen WY, Wu JL (2003a) In vivo studies of liver-type fatty acid-binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538:125–133

    Article  CAS  PubMed  Google Scholar 

  • Her GM, Yeh YH, Wu JL (2003b) 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Dev Dyn 227:347–356

    Article  CAS  PubMed  Google Scholar 

  • Her GM, Chiang CC, Wu JL (2004a) Zebrafish intestinal fatty acid-binding protein (I-FABP) gene promoter drives gut-specific expression in stable transgenic fish. Genesis 38:26–31

    Article  CAS  PubMed  Google Scholar 

  • Her GM, Yeh YH, Wu JL (2004b) Functional conserved elements mediate intestinal-type fatty acid binding protein (I-FABP) expression in the gut epithelia of zebrafish larvae. Dev Dyn 230:734–742

    Article  CAS  PubMed  Google Scholar 

  • Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11:175–180

    Article  CAS  PubMed  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  CAS  PubMed  Google Scholar 

  • Hruscha A, Schmid B (2015) Generation of zebrafish models by CRISPR /Cas9 genome editing. Methods Mol Biol 1254:341–350

    Article  CAS  PubMed  Google Scholar 

  • Hsu MH, Palmer CN, Song W, Griffin KJ, Johnson EF (1998) A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding. J Biol Chem 273:27988–27997

    Article  CAS  PubMed  Google Scholar 

  • Hukriede NA, Joly L, Tsang M, Miles J, Tellis P, Epstein JA, Barbazuk WB, Li FN, Paw B, Postlethwait JH (1999) Radiation hybrid mapping of the zebrafish genome. Proc Natl Acad Sci USA 96:9745–9750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2:0900–0904

    Article  CAS  Google Scholar 

  • Moore SM, Holt VV, Malpass LR, HINes IN, Wheeler MD (2015) Fatty acid-binding protein 5 limits anti-inflammatory response in murine macrophages. Mol Immunol 67:265–275

    Article  CAS  Google Scholar 

  • Iseki S, Amano O, Kanda T, Fujii H, Ono T (1993) Expression and localization of intestinal 15 kDa protein in the rat. Mol Cell Biochem 123:113–120

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jones FC, Grabheer MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S (2012) The genomics basis of adaptive evolution in three spine sticklebacks. Nature 484:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jowett T (1999) Analysis of protein and gene expression. Methods Cell Biol 59:63–85

    Article  CAS  PubMed  Google Scholar 

  • Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. J Biol Chem 272:25252–25259

    Article  CAS  PubMed  Google Scholar 

  • Karanth S, Denovan-Wright EM, Thisse C, Thisse B, Wright JM (2008). The evolutionary relationship between the duplicated copies of the zebrafish fabp11 gene and the tetrapod FABP4, FABP5, FABP8 and FABP9 genes. FEBS J 275:3031–3040

    Article  CAS  PubMed  Google Scholar 

  • Karanth S, Lall SP, Denovan-Wright EM, Wright JM (2009a) Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization and neofunctionalization of duplicated genes. BMC Evol Biol 9:219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karanth S, Denovan-Wrigh EM, Thisse C, Thisse B, Wright JM (2009b) Tandem duplication of the fabp1b gene and subsequent divergence of the tissue-specific distribution of fabp1b.1 and fabp1b.2 transcripts in zebrafish (Danio rerio). Genome 52:985–992

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  CAS  PubMed  Google Scholar 

  • Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19:1404–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Law RD (1985) Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol 108:78–85

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamuraa K (2016) MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwada Y (1911) Meiosis in the pollen mother cells of Zea Mays L. Bot Mag Tokyo 25:163–181

    Article  Google Scholar 

  • Lai YY, Lubieniecki KP, Phillips RB, Chow W, Koop BF, Davidson WS (2009) Genomic organization of Atlantic salmon (Salmo salar) fatty acid binding protein (fabp2) genes reveals independent loss of duplicate loci in teleosts. Mar. Genomics 2:193–200

    Article  Google Scholar 

  • Lai YY, Lubieniecki KP, Koop BF, Davidson WS (2012) Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications. Gene 504:253–261

    Article  CAS  PubMed  Google Scholar 

  • Laprairie RB, Denovan-Wright EM, Wright JM (2016a) Divergent evolution of cis-acting peroxisome proliferator-activated receptor elements that differentially control the tandemly-duplicated fatty acid-binding protein genes, fabp1b.1 and fabp1b.2, in zebrafish. Genome 59:403–412

    Article  CAS  PubMed  Google Scholar 

  • Laprairie RB, Denovan-Wright EM, Wright JM (2016b) Subfunctionalization of peroxisome proliferator response elements accounts for the retention of duplicated fabp1 genes in zebrafish. BMC Evol Biol 16:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu RZ, Denovan-Wright EM, Wright JM (2003a) Structure, mRNA expression and linkage mapping of the brain-type fatty acid-binding protein gene (fabp7) from zebrafish (Danio rerio). Eur J Biochem 270:715–725

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Denovan-Wright EM, Wright JM (2003b) Structure, linkage mapping and expression of the heart-type fatty acid-binding protein gene (fabp3) from zebrafish (Danio rerio). Eur J Biochem 270:3223–3234

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM (2004a) Spatio-temporal distribution of cellular retinol-binding protein gene transcripts (CRBPI and CRBPII) in the developing and adult zebrafish (Danio rerio). Eur J Biochem 271:339–348

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM (2004b) Differential expression of duplicated genes for brain-type fatty acid-binding proteins (fabp7a and fabp7b) during early development of the CNS in zebrafish (Danio rerio). Gene Expr Patterns 4:379–387

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Sun Q, Thisse C, Thisse B, Denovan-Wright EM, Degrave A, Wright JM (2005a) The cellular retinol-binding protein genes are duplicated and differentially transcribed in the developing and adult zebrafish (Danio rerio). Mol Biol. Evolution Int J org Evolution 22:469–477

    CAS  Google Scholar 

  • Liu RZ, Sharma MK, Sun Q, Thisse C, Thisse B, Denovan-Wright EM, Wright JM (2005b) Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expression. FEBS J 272:3561–3571

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Saxena V, Sharma MK, Thisse C, Thisse B, Denovan-Wright EM, Wright JM (2007) The fabp4 gene of zebrafish (Danio rerio)—genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression. FEBS J 274:1621–1633

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Li X, Godbout R (2008) A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina in testis. Genomics 92:436–445

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Mita R, Beaulieu M, Gao Z, Godbout R (2010) Fatty acid binding proteins in brain development and disease. Int J Dev Biol 54:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Lücke C, Gutiérrez-González LH, Hamilton JA (2003) Intracellular lipid-binding proteins: evolution, structure and ligand binding. In: AS Duttaroy, F Spener (eds.) Cellular proteins and their fatty acids in health and disease. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B: 281:20132881

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf DJ, Umesono K, Evans R (1994) The retinoid receptors. In: Sporn MB, Roberts AB, Goodman DS (Eds.), The Retinoids: Biology, Chemistry, and Medicine, 2nd, Raven Press, New York, NY, pp. 319–349

  • Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F (2014) Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 307:G1130–G1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GG, Atshaves BP, Landrock KK, Schroeder F, Kier AB (2015) Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice. Arch Biochem. Biophys 580:41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GG, Chung S, Landrock D, Landrock KK, Dangott LJ, Peng X, Kaczocha M, Murphy EJ, Kier AB, Schroeder F (2016a) Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels. Lipids 51:1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GG, Chung S, Landrock D, Landrock KK, Huang H, Dangott LJ, Peng X, Kaczocha M, Seeger DR, Murphy EJ, Golovko MY Kier AB, Schroeder F (2016b) FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem 138:407–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mearini G, Nielsen PE, Fackelmayer FO (2004) Localization and dynamics of small circular DNA in live mammalian nuclei. Nucleic Acids Res 32:2642–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945

    Article  CAS  PubMed  Google Scholar 

  • Mladenova V, Mladenov E, Russev G (2009) Organization of plasmid DNA into nucleosome-like structures after transfection in eukaryotic cells. Biotechnology and Biotechnological Equipment 23:1044–1047

    Article  CAS  Google Scholar 

  • Moss JB, Price AL, Raz E, Driever W, Rosenthal N (1996) Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 173:89–98

    Article  CAS  PubMed  Google Scholar 

  • Mudumana SP, Wan H, Singh M, Korzh V, Gong Z (2004) Expression analyses of zebrafish transferrin, ifabp, and elastaseB mRNAs as differentiation markers for the three major endodermal organs: liver, intestine, and exocrine pancreas. Dev Dyn 230:165–173

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nelson JS (2006) Fishes of the World. John Wiley, New York

    Google Scholar 

  • Ockner RK, Manning JA, Poppenhausen RB, Ho WK (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177:56–58

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Book  Google Scholar 

  • Ong DE (1994) Cellular transport and metabolism of vitamin A: roles of the cellular retinoid-binding proteins. Nutr Rev 52:S24–S31

    Article  CAS  PubMed  Google Scholar 

  • Palmer CN, Hsu MH, Griffin HJ, Johnson EF (1995) Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem 270:16114–16121

    Article  CAS  PubMed  Google Scholar 

  • Parmar MB, Wright JM (2013a) Comparative evolutionary genomics of medaka and three-spined stickleback fabp2a and fabp2b genes with fabp2 of zebrafish. Genome 56:27–37

    Article  CAS  PubMed  Google Scholar 

  • Parmar MB, Wright JM (2013b) Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Genome 56:691–701

    Article  CAS  PubMed  Google Scholar 

  • Parmar MB, Venkatachalam AB, Wright JM (2012a) The evolutionary relationship of the transcriptionally active fabp11a (intronless) and fabp11b genes of medaka with fabp11 genes of other teleost fishes. FEBS J 279:2310–2321

    Article  CAS  PubMed  Google Scholar 

  • Parmar MB, Venkatachalam AB, Wright JM (2012b) Comparative genomics and evolutionary diversification of the duplicated fabp6a and fabp6b genes in medaka and three-spined stickleback. Comp Biochem Physiol Part D Genomics Proteomics 7:311–321

    Article  CAS  PubMed  Google Scholar 

  • Parmar MB, Lee JJ, Wright JM (2013a) Duplicated crabp1 and crabp2 genes in medaka (Oryzias latipes): gene structure phylogenetic relationship and tissue-specific distribution of transcripts. Comp Biochem Physiol B Biochem Mol Biol 165:10–18

    Article  CAS  PubMed  Google Scholar 

  • Parmar MB, Shams R, Wright JM (2013b) Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes. Mar. Genomics 11:1–10

    Article  Google Scholar 

  • Pierce M, Wang YM, Denovan-Wright EM, Wright JM (2000) Nucleotide sequence of a cDNA clone coding for an intestinal-type fatty acid binding protein and its tissue-specific expression in zebrafish (Danio rerio). Biochim Biophys Acta 1490:175–183

    Article  CAS  PubMed  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  CAS  PubMed  Google Scholar 

  • Reeves R, Gorman CM, Howard B (1985) Minichromosome assembly of non-intergrated plasmid DNA transfected into mammalian cells. Nucleic Acids Res 13:3599–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepressions. Biochem Biophys Acta 1771:926–935

    Article  CAS  Google Scholar 

  • Robinson-Rechavi M, Marchand O, Escriva H, Bardet PL, Zelus D, Hughes S, Laudet V (2001) Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallan LC (2014) Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol Rev Camb Philos Soc 89:950–971

    Article  PubMed  Google Scholar 

  • Schaap FG, van der Vusse GJ, Glatz JFC (2002) Evolution of the family of intracellular lipid-binding proteins in vertebrates. Mol Cell Biochem 239:69–77

    Article  CAS  PubMed  Google Scholar 

  • Schleicher CH, Córdoba OL, Santomé JA, Dell’Angelica EC (1995) Molecular evolution of the multigene family of intracellular lipid-binding proteins. Biochem Mol Biol Int 36:1117–1125

    CAS  PubMed  Google Scholar 

  • Sharma MK, Denovan-Wright EM, Boudreau ME, Wright JM (2003) A cellular retinoic acid-binding protein from zebrafish (Danio rerio): cDNA sequence, phylogenetic analysis, mRNA expression, and gene linkage mapping. Gene 311:119–128

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM (2004) Sequence, linkage mapping and early developmental expression of the intestinal-type fatty acid-binding protein gene (fabp2) from zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 138:391–398

    Article  PubMed  CAS  Google Scholar 

  • Sharma MK, Saxena V, Li RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM (2005) Differential expression of the duplicated cellular retinoic acid-binding protein 2 genes (crabp2a and crabp2b) during zebrafish embryonic development. Gene Expr Patterns 5:371–379

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM (2006) Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. FEBS J 273:3216–3229

    Article  CAS  PubMed  Google Scholar 

  • Shioda N, Yamamoto Y, Watanabe M, Binas B, Owada Y, Fukunaga K (2010) Heart-type fatty acid binding protein regulates dopamine D2 receptor function in mouse brain. J Neurosci 30:3146–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens SG (1951) Possible significance of duplication in evolution. In: M. Demerec (ed.) Advances in Genetics. Academic Press, USA, pp 247–265

    Google Scholar 

  • Stewart JM (2000) The cytoplasmic fatty-acid-binding proteins: thirty years and counting. Cell Mol Life Sci 57:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001a) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356:1661–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JS, Van de Peer Y, Meyer A (2001b) Genome duplication, divergent resolution and speciation. Trends Genet 17:299–301

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodosiou M, Laudet V, Schubert M (2010) From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 67:1423–1445

    Article  CAS  PubMed  Google Scholar 

  • Thirumaran A, Wright JM (2014) Fatty acid-binding protein (fabp) genes of spotted green pufferfish (Tetraodon nigroviridis): comparative genomics and spatial transcriptional regulation. Genome 57:289–301

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Pfumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. ZFIN on-line publication

  • Tischler G (1915) Chromosomenzahl, Form und Individualität in Planzenreiche. Progr Rei Bot 5:164

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam AB, Thisse C, Thisse B, Wright JM (2009) Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio). FEBS J 276:6787–6797

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam AB, Lall SP, Denovan-Wright EM, Wright JM (2012) Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish. BMC Evol Biol 12:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam AB, Sawler DL, Wright JM (2013) Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Gene 520:14–21

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (2000) The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  • Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H et al (2000) A comparative map of the zebrafish genome. Genome Res 10:1903–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix et al (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Wright.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, A.B., Parmar, M.B. & Wright, J.M. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Mol Genet Genomics 292, 699–727 (2017). https://doi.org/10.1007/s00438-017-1313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1313-5

Keywords

Navigation